This paper studies the optimal investment and reinsurance problem for a risk model with premium control. It is assumed that the insurance safety loading and the time-varying claim arrival rate are connected through a monotone decreasing function, and that the insurance and reinsurance safety loadings have a linear relationship. Applying stochastic control theory, we are able to derive the optimal strategy that maximizes the expected exponential utility of terminal wealth. We also provide a few numerical examples to illustrate the impact of the model parameters on the optimal strategy.
Citation: |
[1] |
S. Asmussen, B. J. Christensen and M. Taksar, Portfolio size as function of the premium: Modelling and optimization, Stochastics, 85 (2013), 575-588.
doi: 10.1080/17442508.2013.797426.![]() ![]() ![]() |
[2] |
L. Bai and J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance: Mathematics and Economics, 42 (2008), 968-975.
doi: 10.1016/j.insmatheco.2007.11.002.![]() ![]() ![]() |
[3] |
S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937.![]() ![]() ![]() |
[4] |
W. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, 2$^{nd}$ edition, Stochastic Modelling and Applied Probability, vol. 25, Springer-Verlag, New York, 2006.
![]() ![]() |
[5] |
C. Hipp and M. Plum, Optimal investment for insurers, Insurance: Mathematics and Economics, 27 (2000), 215-228.
doi: 10.1016/S0167-6687(00)00049-4.![]() ![]() ![]() |
[6] |
B. Højgaard, Optimal dynamic premium control in non-life insurance. Maximizing dividend pay-outs, Scandinavian Actuarial Journal, 2002,225–245.
doi: 10.1080/03461230110106291.![]() ![]() ![]() |
[7] |
B. Højgaard and M. Taksar, Optimal proportional reinsurance policies for diffusion models, Scandinavian Actuarial Journal, 1998,166–180.
doi: 10.1016/S0167-6687(98)00007-9.![]() ![]() ![]() |
[8] |
S. E. Jabari and H. X. Liu, A stochastic model of traffic flow: Gaussian approximation and estimation, Transportation Research Part B: Methodological, 47 (2013), 15-41.
doi: 10.1016/j.trb.2012.09.004.![]() ![]() |
[9] |
Z. Liang, L. Bai and J. Guo, Optimal investment and proportional reinsurance with constrained control variables, Optimal Control Applications and Methods, 32 (2011), 587-608.
doi: 10.1002/oca.965.![]() ![]() ![]() |
[10] |
Z. Liang and J. Guo, Optimal proportional reinsurance and ruin probability, Stochastic Models, 23 (2007), 333-350.
doi: 10.1080/15326340701300894.![]() ![]() ![]() |
[11] |
Z. Liang and K. C. Yuen, Optimal dynamic reinsurance with dependent risks: Variance premium principle, Scandinavian Actuarial Journal, 2016, 18–36.
doi: 10.1080/03461238.2014.892899.![]() ![]() ![]() |
[12] |
Z. Liang, K. C. Yuen and K. C. Cheung, Optimal reinsurance and investment problem in a constant elasticity of variance stock market for jump-diffusion risk model, Applied Stochastic Models in Business and Industry, 28 (2012), 585-597.
doi: 10.1002/asmb.934.![]() ![]() ![]() |
[13] |
A. Martin-Löf, Premium control in an insurance system, an approach using linear control theory, Scandinavian Actuarial Journal, 1983, 1–27.
doi: 10.1080/03461238.1983.10408686.![]() ![]() ![]() |
[14] |
X. F. Peng, L. H. Bai and J. Y. Guo, Optimal control with restrictions for a diffusion risk model under constant interest force, Applied Mathematics & Optimization, 73 (2016), 115-136.
doi: 10.1007/s00245-015-9295-3.![]() ![]() ![]() |
[15] |
D. Promislow and V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift, North American Actuarial Journal, 9 (2005), 109-128.
doi: 10.1080/10920277.2005.10596214.![]() ![]() ![]() |
[16] |
H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting, Scandinavian Actuarial Journal, 2001, 55–68.
doi: 10.1080/034612301750077338.![]() ![]() ![]() |
[17] |
H. Schmidli, On minimizing the ruin probability by investment and reinsurance, Annals of Applied Probability, 12 (2002), 890-907.
doi: 10.1214/aoap/1031863173.![]() ![]() ![]() |
[18] |
J. Thøegersen, Optimal premium as a function of the deductible: Customer analysis and portfolio characteristics, Risks, 4 (2016), 19 pages.
![]() |
[19] |
S. Thonhauser, Optimal investment under transaction costs for an insurer, European Actuarial Journal, 3 (2013), 359-383.
doi: 10.1007/s13385-013-0078-4.![]() ![]() ![]() |
[20] |
M. Vandebroek and J. Dhaene, Optimal premium control in a non-life insurance business, Scandinavian Actuarial Journal, 1990, 3–13.
doi: 10.1080/03461238.1990.10413869.![]() ![]() ![]() |
[21] |
H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Mathematics and Economics, 37 (2005), 615-634.
doi: 10.1016/j.insmatheco.2005.06.009.![]() ![]() ![]() |
[22] |
K. C. Yuen, Z. Liang and M. Zhou, Optimal proportional reinsurance with common shock dependence, Insurance: Mathematics and Economics, 64 (2015), 1-13.
doi: 10.1016/j.insmatheco.2015.04.009.![]() ![]() ![]() |
[23] |
M. Zhou, K. C. Yuen and C. C. Yin, Optimal investment and premium control in a nonlinear diffusion model, Acta Mathematicae Applicatae Sinica, 33 (2017), 945-958.
doi: 10.1007/s10255-017-0709-7.![]() ![]() ![]() |
Effect of
Effect of
Effect of
Effect of
Effect of