• Previous Article
    Performance analysis and optimization for cognitive radio networks with a finite primary user buffer and a probability returning scheme
  • JIMO Home
  • This Issue
  • Next Article
    A dynamic lot sizing model with production-or-outsourcing decision under minimum production quantities
doi: 10.3934/jimo.2019081

A robust reduced-order observers design approach for linear discrete periodic systems

1. 

Institute of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450011, China

2. 

Key Laboratory of Big Data Analysis and Processing of Henan Province, Henan University, Zhengzhou 450011, China

*Corresponding author: Lei Zhang

Received  October 2018 Revised  March 2019 Published  July 2019

Fund Project: This work is supported by the Programs of National Natural Science Foundation of China (Nos. U1604148, 11501200, 61402149), Innovative Talents of Higher Learning Institutions of Henan (No. 17HASTIT023), Central China thousand talents program(No.ZYQR201810138)

This paper investigates the problem of designing reduced-order observers for linear discrete-time periodic (LDP) systems. In case that the linear discrete-time periodic system is observable, an algebraic equivalent system is obtained by non-singular linear transformation, and the partial states to be observed are separated simultaneously. Then the considered problem is transformed into the problem of solving a class of periodic Sylvester matrix equation and an iterative algorithm for periodic reduced-order state observers design is derived. In addition, robust consideration based on periodic reduced-order state observers for LDP systems is also conducted. At last, one numerical example is worked out to illustrate the effectiveness of the proposed approaches.

Citation: Lingling Lv, Wei He, Xianxing Liu, Zhang Lei. A robust reduced-order observers design approach for linear discrete periodic systems. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019081
References:
[1]

H. Bourles and U. Oberst, Robust stabilization of discrete-time periodic linear systems for tracking and disturbance rejection, Mathematics of Control Signals & Systems, 28 (2016), 1-34.  doi: 10.1007/s00498-016-0171-8.  Google Scholar

[2]

H. Bourles and U. Oberst, Robust stabilization of discrete-time periodic linear systems for tracking and disturbance rejection, Mathematics of Control Signals & Systems, 28 (2016), 1-34.  doi: 10.1007/s00498-016-0171-8.  Google Scholar

[3]

Y. Chen and J. Lam, Estimation and synthesis of reachable set for discrete-time periodic systems, Optimal Control Applications & Methods, 37 (2016), 885-901.  doi: 10.1002/oca.2211.  Google Scholar

[4]

O. M. Grasselli and S. Longhi, Finite zero structure of linear periodic discrete-time systems, International Journal of Systems Science, 22 (1991), 1785-1806.  doi: 10.1080/00207729108910751.  Google Scholar

[5]

R. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng., 82 (1960), 35-45.  doi: 10.1115/1.3662552.  Google Scholar

[6]

B. Li, Y. Rong and J. Sun, et al., A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109. Google Scholar

[7]

B. Li, J. Sun and H. Xu, et al., A class of two-stage distributionally robust games, Journal of Industrial & Management Optimization, 15 (2019), 387-400.  Google Scholar

[8]

B. Li, X. Qian and J. Sun, et al., A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97. doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[9]

W. LinL. Zhao and K. Dong, Performance analysis of re-adhesion optimization control based on full-dimension state observer, Procedia Engineering, 23 (2011), 531-536.   Google Scholar

[10]

Y. Liu, Y. Yin and K. L. Teo, et al., Probabilistic control of Markov jump systems by scenario optimization approach, Journal of Industrial & Management Optimization, (2018), 742–753. Google Scholar

[11]

L. Lv and Z. Zhang, Finite iterative solutions to periodic Sylvester matrix equations, Journal of the Franklin Institute, 354 (2017), 2358-2370.  doi: 10.1016/j.jfranklin.2017.01.004.  Google Scholar

[12]

L. LvZ. Zhang and L. Zhang, A parametric poles assignment algorithm for second-order linear periodic systems, Journal of the Franklin Institute, 354 (2017), 8057-8071.  doi: 10.1016/j.jfranklin.2017.09.029.  Google Scholar

[13]

R. Sanz, P. Garcia, E. Fridman and P. Albertos, A predictive extended state observer for a class of nonlinear systems with input delay subject to external disturbances, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, 2017, 4345–4350. doi: 10.1109/CDC.2017.8264300.  Google Scholar

[14]

H. A. Tehrani and J. Esmaeili, Stability of fractional-order periodic discrete-time linear systems, IMA Journal of Mathematical Control and Information, 34 (2017), 271-281.  doi: 10.1093/imamci/dnv043.  Google Scholar

[15]

H. Trinh and M. Aldeen, A reduced-order state observer for large-scale discrete-time systems, Computers & Electrical Engineering, 23 (1997), 301-309.  doi: 10.1109/9.649721.  Google Scholar

[16]

L. Y. Wang, C. Li and G. G. Yin, et al., State observability and observers of linear-timeinvariant systems under irregular sampling and sensor limitations, IEEE Transactions on Automatic Control, 56 (2011), 2639-2654. doi: 10.1109/TAC.2011.2122570.  Google Scholar

[17]

A. Wu and G. Duan, Robust fault detection in linear systems based on full-order state observers, Journal of Control Theory and Applications, 5 (2007), 325-330.  doi: 10.1007/s11768-006-6073-4.  Google Scholar

[18]

L. Yan, H. Qiao and Z. Jiao, et al., Linear motor tracking control based on adaptive robust control and extended state observer, in IEEE International Conference on Cybernetics and Intelligent Systems, IEEE, 2017,704–709.  Google Scholar

[19]

Y. Yang, An efficient LQR design for discrete-time linear periodic system based on a novel lifting method, Automatica, 87 (2018), 383-388.  doi: 10.1016/j.automatica.2017.10.019.  Google Scholar

[20]

Y. Yin, Y. Liu and K. L. Teo, et al. Event-triggered probabilistic robust control of linear systems with input constrains: By scenario optimization approach, International Journal of Robust and Nonlinear Control, 28 (2018), 144-153. doi: 10.1002/rnc.3858.  Google Scholar

[21]

B. ZhouD. Li and Z. Lin, Control of discrete-time periodic linear systems with input saturation via multi-step periodic invariant sets, International Journal of Robust & Nonlinear Control, 25 (2015), 103-124.   Google Scholar

[22]

B. Zhou, Truncated Predictor Feedback for Time-Delay Systems, Springer, Berlin Heidelberg, 2014. doi: 10.1007/978-3-642-54206-0.  Google Scholar

[23]

B. ZhouZ. Y. Li and Z. Lin, Observer based output feedback control of linear systems with input and output delays, Automatica, 49 (2013), 2039-2052.  doi: 10.1016/j.automatica.2013.03.031.  Google Scholar

[24]

B. ZhouC. Xu and G. Duan, Distributed and truncated reduced-order observer based output feedback consensus of multi-agent systems, IEEE Transactions on Automatic Control, 59 (2014), 2264-2270.  doi: 10.1109/TAC.2014.2301573.  Google Scholar

[25]

F. Zhu and F. Cen, Full-order observer-based actuator fault detection and reduced-order observer-based fault reconstruction for a class of uncertain nonlinear systems, Journal of Process Control, 20 (2010), 1141-1149.   Google Scholar

show all references

References:
[1]

H. Bourles and U. Oberst, Robust stabilization of discrete-time periodic linear systems for tracking and disturbance rejection, Mathematics of Control Signals & Systems, 28 (2016), 1-34.  doi: 10.1007/s00498-016-0171-8.  Google Scholar

[2]

H. Bourles and U. Oberst, Robust stabilization of discrete-time periodic linear systems for tracking and disturbance rejection, Mathematics of Control Signals & Systems, 28 (2016), 1-34.  doi: 10.1007/s00498-016-0171-8.  Google Scholar

[3]

Y. Chen and J. Lam, Estimation and synthesis of reachable set for discrete-time periodic systems, Optimal Control Applications & Methods, 37 (2016), 885-901.  doi: 10.1002/oca.2211.  Google Scholar

[4]

O. M. Grasselli and S. Longhi, Finite zero structure of linear periodic discrete-time systems, International Journal of Systems Science, 22 (1991), 1785-1806.  doi: 10.1080/00207729108910751.  Google Scholar

[5]

R. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng., 82 (1960), 35-45.  doi: 10.1115/1.3662552.  Google Scholar

[6]

B. Li, Y. Rong and J. Sun, et al., A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109. Google Scholar

[7]

B. Li, J. Sun and H. Xu, et al., A class of two-stage distributionally robust games, Journal of Industrial & Management Optimization, 15 (2019), 387-400.  Google Scholar

[8]

B. Li, X. Qian and J. Sun, et al., A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97. doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[9]

W. LinL. Zhao and K. Dong, Performance analysis of re-adhesion optimization control based on full-dimension state observer, Procedia Engineering, 23 (2011), 531-536.   Google Scholar

[10]

Y. Liu, Y. Yin and K. L. Teo, et al., Probabilistic control of Markov jump systems by scenario optimization approach, Journal of Industrial & Management Optimization, (2018), 742–753. Google Scholar

[11]

L. Lv and Z. Zhang, Finite iterative solutions to periodic Sylvester matrix equations, Journal of the Franklin Institute, 354 (2017), 2358-2370.  doi: 10.1016/j.jfranklin.2017.01.004.  Google Scholar

[12]

L. LvZ. Zhang and L. Zhang, A parametric poles assignment algorithm for second-order linear periodic systems, Journal of the Franklin Institute, 354 (2017), 8057-8071.  doi: 10.1016/j.jfranklin.2017.09.029.  Google Scholar

[13]

R. Sanz, P. Garcia, E. Fridman and P. Albertos, A predictive extended state observer for a class of nonlinear systems with input delay subject to external disturbances, in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, 2017, 4345–4350. doi: 10.1109/CDC.2017.8264300.  Google Scholar

[14]

H. A. Tehrani and J. Esmaeili, Stability of fractional-order periodic discrete-time linear systems, IMA Journal of Mathematical Control and Information, 34 (2017), 271-281.  doi: 10.1093/imamci/dnv043.  Google Scholar

[15]

H. Trinh and M. Aldeen, A reduced-order state observer for large-scale discrete-time systems, Computers & Electrical Engineering, 23 (1997), 301-309.  doi: 10.1109/9.649721.  Google Scholar

[16]

L. Y. Wang, C. Li and G. G. Yin, et al., State observability and observers of linear-timeinvariant systems under irregular sampling and sensor limitations, IEEE Transactions on Automatic Control, 56 (2011), 2639-2654. doi: 10.1109/TAC.2011.2122570.  Google Scholar

[17]

A. Wu and G. Duan, Robust fault detection in linear systems based on full-order state observers, Journal of Control Theory and Applications, 5 (2007), 325-330.  doi: 10.1007/s11768-006-6073-4.  Google Scholar

[18]

L. Yan, H. Qiao and Z. Jiao, et al., Linear motor tracking control based on adaptive robust control and extended state observer, in IEEE International Conference on Cybernetics and Intelligent Systems, IEEE, 2017,704–709.  Google Scholar

[19]

Y. Yang, An efficient LQR design for discrete-time linear periodic system based on a novel lifting method, Automatica, 87 (2018), 383-388.  doi: 10.1016/j.automatica.2017.10.019.  Google Scholar

[20]

Y. Yin, Y. Liu and K. L. Teo, et al. Event-triggered probabilistic robust control of linear systems with input constrains: By scenario optimization approach, International Journal of Robust and Nonlinear Control, 28 (2018), 144-153. doi: 10.1002/rnc.3858.  Google Scholar

[21]

B. ZhouD. Li and Z. Lin, Control of discrete-time periodic linear systems with input saturation via multi-step periodic invariant sets, International Journal of Robust & Nonlinear Control, 25 (2015), 103-124.   Google Scholar

[22]

B. Zhou, Truncated Predictor Feedback for Time-Delay Systems, Springer, Berlin Heidelberg, 2014. doi: 10.1007/978-3-642-54206-0.  Google Scholar

[23]

B. ZhouZ. Y. Li and Z. Lin, Observer based output feedback control of linear systems with input and output delays, Automatica, 49 (2013), 2039-2052.  doi: 10.1016/j.automatica.2013.03.031.  Google Scholar

[24]

B. ZhouC. Xu and G. Duan, Distributed and truncated reduced-order observer based output feedback consensus of multi-agent systems, IEEE Transactions on Automatic Control, 59 (2014), 2264-2270.  doi: 10.1109/TAC.2014.2301573.  Google Scholar

[25]

F. Zhu and F. Cen, Full-order observer-based actuator fault detection and reduced-order observer-based fault reconstruction for a class of uncertain nonlinear systems, Journal of Process Control, 20 (2010), 1141-1149.   Google Scholar

Figure 1.  The trajectories of observed state errors by $ L_{t}^{\mathrm{rand}} $ and $ L_{t}^{\mathrm{robu}} $
[1]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo, Rohanin Ahmad. An iterative algorithm based on model-reality differences for discrete-time nonlinear stochastic optimal control problems. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 109-125. doi: 10.3934/naco.2013.3.109

[2]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[3]

Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189

[4]

Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Addendum to "Optimal control of multiscale systems using reduced-order models". Journal of Computational Dynamics, 2017, 4 (1&2) : 167-167. doi: 10.3934/jcd.2017006

[5]

Carsten Hartmann, Juan C. Latorre, Wei Zhang, Grigorios A. Pavliotis. Optimal control of multiscale systems using reduced-order models. Journal of Computational Dynamics, 2014, 1 (2) : 279-306. doi: 10.3934/jcd.2014.1.279

[6]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[7]

Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discrete-time system via nonlinear impulsive control. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020106

[8]

Luigi C. Berselli, Tae-Yeon Kim, Leo G. Rebholz. Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1027-1050. doi: 10.3934/dcdsb.2016.21.1027

[9]

Lingling Lv, Zhe Zhang, Lei Zhang, Weishu Wang. An iterative algorithm for periodic sylvester matrix equations. Journal of Industrial & Management Optimization, 2018, 14 (1) : 413-425. doi: 10.3934/jimo.2017053

[10]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[11]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[12]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[13]

Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277

[14]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[15]

Hongbiao Fan, Jun-E Feng, Min Meng. Piecewise observers of rectangular discrete fuzzy descriptor systems with multiple time-varying delays. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1535-1556. doi: 10.3934/jimo.2016.12.1535

[16]

Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650

[17]

Bara Kim, Jeongsim Kim. Explicit solution for the stationary distribution of a discrete-time finite buffer queue. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1121-1133. doi: 10.3934/jimo.2016.12.1121

[18]

Ciprian Preda. Discrete-time theorems for the dichotomy of one-parameter semigroups. Communications on Pure & Applied Analysis, 2008, 7 (2) : 457-463. doi: 10.3934/cpaa.2008.7.457

[19]

Lih-Ing W. Roeger. Dynamically consistent discrete-time SI and SIS epidemic models. Conference Publications, 2013, 2013 (special) : 653-662. doi: 10.3934/proc.2013.2013.653

[20]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (27)
  • HTML views (219)
  • Cited by (0)

Other articles
by authors

[Back to Top]