\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Analysis of the queue lengths in a priority retrial queue with constant retrial policy

  • * Corresponding author: Arnaud Devos

    * Corresponding author: Arnaud Devos 
Abstract Full Text(HTML) Figure(7) Related Papers Cited by
  • In this paper, we analyze a priority queueing system with a regular queue and an orbit. Customers in the regular queue have priority over the customers in the orbit. Only the first customer in the orbit (if any) retries to get access to the server, if the queue and server are empty (constant retrial policy). In contrast with existing literature, we assume different service time distributions for the high- and low-priority customers. Closed-form expressions are obtained for the probability generating functions of the number of customers in the queue and orbit, in steady-state. Another contribution is the extensive singularity analysis of these probability generating functions to obtain the stationary (asymptotic) probability mass functions of the queue and orbit lengths. Influences of the service times and the retrial policy are illustrated by means of some numerical examples.

    Mathematics Subject Classification: Primary: 60K25, 90B22; Secondary: 68M20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Mean values of the queue and orbit lengths versus the mean class-2 service times ($ \rho = 0.7 $, $ \beta_1 = 1 $ and $ \nu = 3 $)

    Figure 2.  Mean values of the queue and orbit lengths versus the mean class-1 service times ($ \rho = 0.7 $, $ \beta_2 = 1.5 $ and $ \nu = 3 $)

    Figure 3.  Mean values of the queue and orbit lengths versus the mean class-1 service times ($ \rho = 0.7 $, $ \beta_2 = 1.5 $ and $ R^*(s) = 1 $)

    Figure 4.  Variances of the queue and orbit length versus the load ($ \beta_1 = \beta_2 = 1.1 $ and $ \nu = 4 $)

    Figure 5.  Regions for the tail behaviour as a function of the mean service times of both classes ($ \lambda_1 = \lambda_2 = 0.3 $ and $ \nu = 3 $)

    Figure 6.  Regions for the tail behaviour as a function of the mean service times of both classes ($ \lambda_1 = \lambda_2 = 0.3 $ and $ R^*(s) = 1 $)

    Figure 7.  Tail behaviour of the orbit length for different service time distributions ($ \lambda_1 = \lambda_2 = 0.3 $, $ \beta_1 = 1.2 $, $ \beta_2 = 1 $, $ \nu = 3 $ and $ \alpha_1 = \alpha_2 = -2.5 $)

  • [1] J. Abate and W. Whitt, Asymptotics for M/G/1 low-priority waiting-time tail probabilities, Queueing Systems, 25 (1997), 173-233.  doi: 10.1023/A:1019104402024.
    [2] J. AbateG. L. Choudhury and W. Whitt, Waiting-time tail probabilities in queues with long-tail service-time distributions, Queueing Systems, 16 (1994), 311-338.  doi: 10.1007/BF01158960.
    [3] J. R. Artalejo, Accessible bibliography on retrial queues: Progress in 2000–2009, Mathematical and Computer Modelling, 51 (2010), 1071-1081.  doi: 10.1016/j.mcm.2009.12.011.
    [4] J. R. Artalejo and A. Gómez-Corral, Retrial Queueing Systems, Springer-Verlag Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-78725-9.
    [5] I. Atencia and P. Moreno, A single-server retrial queue with general retrial times and Bernoulli schedule, Applied Mathematics and Computation, 162 (2005), 855-880.  doi: 10.1016/j.amc.2003.12.128.
    [6] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Cambridge University Press, 1986. doi: 10.1017/CBO9780511721434.
    [7] B. D. ChoiK. K. Park and C. E. M. Pearce, An M/M/1 retrial queue with control policy and general retrial times, Queueing Systems, 14 (1993), 275-292.  doi: 10.1007/BF01158869.
    [8] B. D. Choi and Y. Chang, Single server retrial queues with priority calls, Mathematical and Computer Modelling, 30 (1999), 7-32.  doi: 10.1016/S0895-7177(99)00129-6.
    [9] A. Devos, J. Walraevens and H. Bruneel, A priority retrial queue with constant retrial policy, International Conference on Queueing Theory and Network Applications, (2018), 3–21. doi: 10.1007/978-3-319-93736-6_1.
    [10] G. Falin and J. G. Templeton, Retrial Queues, CRC Press, 1997. doi: 10.1007/978-1-4899-2977-8.
    [11] K. Farahmand, Single line queue with repeated demands, Queueing Systems, 6 (1990), 223-228.  doi: 10.1007/BF02411475.
    [12] G. Fayolle, A simple telephone exchange with delayed feedbacks, Proc. of the International Seminar on Teletraffic Analysis and Computer Performance Evaluation, (1986), 245–253.
    [13] P. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM Journal on Discrete Mathematics, 3 (1990), 216-240.  doi: 10.1137/0403019.
    [14] P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009. doi: 10.1017/CBO9780511801655.
    [15] S. Gao, A preemptive priority retrial queue with two classes of customers and general retrial times, Operational Research, 15 (2015), 233-251.  doi: 10.1007/s12351-015-0175-z.
    [16] A. Gómez-Corral, Stochastic analysis of a single server retrial queue with general retrial times, Naval Research Logistics (NRL), 46 (1999), 561-581.  doi: 10.1002/(SICI)1520-6750(199908)46:5<561::AID-NAV7>3.0.CO;2-G.
    [17] J. KimB. Kim and S. S. Ko, Tail asymptotics for the queue size distribution in an M/G/1 retrial queue, Journal of Applied Probability, 44 (2007), 1111-1118.  doi: 10.1239/jap/1197908829.
    [18] H. Li and Y. Q. Zhao, Exact tail asymptotics in a priority queue characterizations of the non-preemptive model, Queueing Systems, 68 (2011), 165-192.  doi: 10.1007/s11134-011-9252-z.
    [19] T. MaertensJ. Walraevens and H. Bruneel, Priority queueing systems: from probability generating functions to tail probabilities, Queueing Systems, 55 (2007), 27-39.  doi: 10.1007/s11134-006-9003-8.
    [20] T. Phung-DucW. RogiestY. Takahashi and H. Bruneel, Retrial queues with balanced call blending: Analysis of single-server and multiserver model, Annals of Operations Research, 239 (2016), 429-449.  doi: 10.1007/s10479-014-1598-2.
    [21] T. Phung-Duc and W. Rogiest, Two way communication retrial queues with balanced call blending, International Conference on Analytical and Stochastic Modeling Techniques and Applications, (2012), 16–31. doi: 10.1007/978-3-642-30782-9_2.
    [22] W. ShangL. Liu and Q. Li, Tail asymptotics for the queue length in an M/G/1 retrial queue, Queueing Systems, 52 (2006), 193-198.  doi: 10.1007/s11134-006-5223-1.
    [23] J. Walraevens, Discrete-Time Queueing Models With Priorities, Ph.D thesis, Ghent University, 2004.
    [24] J. Walraevens, D. Claeys and T. Phung-Duc, Asymptotics of queue length distributions in priority retrial queues, arXiv: 1801.06993, (2018). doi: 10.1016/j.peva.2018.10.004.
    [25] J. Walraevens and B. Steyaert and H. Bruneel, Performance analysis of a single-server ATM queue with a priority scheduling, Computers & Operations Research, 30 (2003), 2003. doi: 10.1007/s10479-006-0053-4.
  • 加载中

Figures(7)

SHARE

Article Metrics

HTML views(987) PDF downloads(361) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return