• Previous Article
    A two-priority single server retrial queue with additional items
  • JIMO Home
  • This Issue
  • Next Article
    Transient analysis of N-policy queue with system disaster repair preventive maintenance re-service balking closedown and setup times
November  2020, 16(6): 2857-2890. doi: 10.3934/jimo.2019084

Multi-period optimal investment choice post-retirement with inter-temporal restrictions in a defined contribution pension plan

1. 

China Institute for Actuarial Science, Central University of Finance and Economics, Beijing 100081, China

2. 

School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081, China

3. 

Beijing Branch, China Minsheng Banking Corporation Limited, Beijing 100031, China

4. 

School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou 510006, China

* Corresponding author: zengli@gdufs.edu.cn

Received  October 2018 Revised  March 2019 Published  July 2019

Fund Project: The first author is supported by grants from National Natural Science Foundation of China (Nos. 11671411, 11771465)

This paper studies a multi-period portfolio selection problem during the post-retirement phase of a defined contribution pension plan. The retiree is allowed to defer the purchase of the annuity until the time of compulsory annuitization. A series of investment targets over time are set, and restrictions on the inter-temporal expected values of the portfolio are considered. We aim to minimize the accumulated variances from the time of retirement to the time of compulsory annuitization. Using the Lagrange multiplier technique and dynamic programming, we study in detail the existence of the optimal strategy and derive its closed-form expression. For comparison purposes, the explicit solution of the classical target-based model is also provided. The properties of the optimal investment strategy, the probabilities of achieving a worse or better pension at the time of compulsory annuitization and the bankruptcy probability are compared in detail under two models. The comparison shows that our model can greatly decrease the probability of achieving a worse pension at the compulsory time and can significantly increase the probability of achieving a better pension.

Citation: Huiling Wu, Xiuguo Wang, Yuanyuan Liu, Li Zeng. Multi-period optimal investment choice post-retirement with inter-temporal restrictions in a defined contribution pension plan. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2857-2890. doi: 10.3934/jimo.2019084
References:
[1]

M. AkianJ. Menaldi and A. Sulem, On an investment-consumption model with transaction costs, SIAM Journal on Control and Optimization, 34 (1996), 329-364.  doi: 10.1137/S0363012993247159.  Google Scholar

[2]

P. Albrecht and R. Maurer, Self-annuitization, consumption shortfall in retirement and asset allocation: The annuity benchmark, Journal of Pension Economics and Finance, 1 (2002), 269-288.  doi: 10.1017/S1474747202001117.  Google Scholar

[3]

P. BattocchioF. Menoncin and O. Scaillet, Optimal asset allocation for pension funds under mortality risk during the accumulation and decumulation phases, Annals of Operations Research, 152 (2007), 141-165.  doi: 10.1007/s10479-006-0144-2.  Google Scholar

[4]

E. Bayraktar and V. R. Young, Minimizing the probability of lifetime ruin with deferred life annuities, North American Actuarial Journal, 13 (2009), 141-154.  doi: 10.1080/10920277.2009.10597543.  Google Scholar

[5]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, Wiley Interscience, New Jersey, 2006. doi: 10.1002/0471787779.  Google Scholar

[6]

D. BlakeA. J. G. Cairns and K. Dowd, Pensionmetrics 2: Stochastic pension plan design during the distribution phase, Insurance: Mathematics and Economics, 33 (2003), 29-47.  doi: 10.1016/S0167-6687(03)00141-0.  Google Scholar

[7]

J. R. Brown, Private pensions, mortality risk, and the decision to annuitize, Journal of Public Economics, 82 (2001), 29-62.  doi: 10.3386/w7191.  Google Scholar

[8]

O. L. V. Costa and R. B. Nabholz, Multiperiod mean-variance optimization with intertemporal restrictions, Journal of Optimization Theory and Applications, 134 (2007), 257-274.  doi: 10.1007/s10957-007-9233-x.  Google Scholar

[9]

H. Dadashi, Optimal investment-consumption problem post-retirement with a minimum guarantee, Working paper, arXiv: 1803.00611, 2018. doi: 10.1016/j.cam.2019.02.027.  Google Scholar

[10]

M. Di GiacintoS. FedericoF. Gozzi and E. Vigna, Income drawdown option with minimum guarantee, European Journal of Operational Research, 234 (2014), 610-624.  doi: 10.1016/j.ejor.2013.10.026.  Google Scholar

[11]

P. Emms, Relative choice models for income drawdown in a defined contribution pension scheme, North American Actuarial Journal, 14 (2010), 176-197.  doi: 10.1080/10920277.2010.10597584.  Google Scholar

[12]

P. Emms and S. Haberman, Income drawdown schemes for a defined-contribution pension plan, The Journal of Risk and Insurance, 75 (2008), 739-761.  doi: 10.1080/10920277.2010.10597584.  Google Scholar

[13]

A. Finkelstein and J. Poterba, Selection effects in the United Kingdom individual annuities market, Economic Journal, 112 (2002), 28-50.  doi: 10.1111/1468-0297.0j672.  Google Scholar

[14]

A. M. Geoffrion, Duality in nonlinear programming: A simplified application-oriented development, SIAM Review, 13 (1971), 1-37.  doi: 10.1137/1013001.  Google Scholar

[15]

R. GerrardS. Haberman and E. Vigna, Optimal investment choices post-retirement in a defined contribution pension scheme, Insurance: Mathematics and Economics, 35 (2004), 321-342.  doi: 10.1016/j.insmatheco.2004.06.002.  Google Scholar

[16]

R. GerrardS. Haberman and E. Vigna, The management of decumulation risks in a defined contribution pension plan, North American Actuarial Journal, 10 (2006), 84-110.  doi: 10.1080/10920277.2006.10596241.  Google Scholar

[17]

R. GerrardB. Høgaard and E. Vigna, Choosing the optimal annuitization time post retirement, Quantitative Finance, 12 (2012), 1143-1159.  doi: 10.1080/14697680903358248.  Google Scholar

[18]

J. InkmannP. Lopes and A. Michaelides, How deep is the annuity market participation puzzle?, The Review of Financial Studies, 24 (2011), 279-319.   Google Scholar

[19]

C. W. LinL. Zeng and H. L. Wu, Multi-period portfolio optimization in a defined contribution pension plan during the decumulation phase, J. Ind. Manag. Optim., 15 (2019), 401-427.  doi: 10.3934/jimo.2018059.  Google Scholar

[20]

L. M. Lockwood, Bequest motives and the annuity puzzle, Review of Economic Dynamics, 15 (2012), 226-243.  doi: 10.1016/j.red.2011.03.001.  Google Scholar

[21]

F. Menoncin and E. Vigna, Mean-variance target-based optimisation for defined contribution pension schemes in a stochastic framework, Insurance: Mathmatics and Economics, 76 (2017), 172-184.  doi: 10.1016/j.insmatheco.2017.08.002.  Google Scholar

[22]

M. A. Milevsky, Optimal annuitization policies: Analysis of the options, North American Actuarial Journal, 5 (2001), 57-69.  doi: 10.1080/10920277.2001.10595953.  Google Scholar

[23]

M. A. Milevsky and C. Robinson, Self-annuitization and ruin in retirement, North American Actuarial Journal, 4 (2000), 113-129.  doi: 10.1080/10920277.2000.10595940.  Google Scholar

[24]

M. A. MilevskyK. S. Moore and V. R. Young, Optimal asset allocation and ruin minimization annuitization strategies, Mathematical Finance, 16 (2006), 647-671.  doi: 10.1016/j.jedc.2006.11.003.  Google Scholar

[25]

M. A. Milevsky and V. R. Young, Annuitization and asset allocation, Journal of Economic Dynamics and Control, 31 (2007), 3138-3177.  doi: 10.1016/j.jedc.2006.11.003.  Google Scholar

[26]

G. Stabile, Optimal timing of the annuity purchase: combined stochastic control and optimal stopping problem, International Journal of Theoretical and Applied Finance, 9 (2006), 151-170.  doi: 10.1142/S0219024906003524.  Google Scholar

[27]

B. Z. TemocinR. Korn and A. S. Selcuk-Kestel, Constant proportion portfolio insurance in defined contribution pension plan management under discrete-time trading, Annals of Operations Research, 266 (2018), 329-348.  doi: 10.1007/s10479-017-2449-8.  Google Scholar

[28]

E. Vigna, On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.  doi: 10.1080/14697688.2012.708778.  Google Scholar

[29]

H. L. Wu and Y. Zeng, Equilibrium investment strategy for defined-contribution pension schemes with generalized mean-variance criterion and mortality risk, Insurance: Mathematics and Economics, 64 (2015), 396-408.  doi: 10.1016/j.insmatheco.2015.07.007.  Google Scholar

[30]

X. Y. Zhang and J. Y. Guo, The role of inflation-indexed bond in optimal management of defined contribution pension plan during the decumulation phase, Risks, 24 (2018).  doi: 10.3390/risks6020024.  Google Scholar

[31]

S. S. ZhuD. Li and S. Y. Wang, Risk control over bankruptcy in dynamic portfolio selection: A generalized mean-variance formulation, IEEE Transactions on Automatic Control, 49 (2004), 447-457.  doi: 10.1109/TAC.2004.824474.  Google Scholar

show all references

References:
[1]

M. AkianJ. Menaldi and A. Sulem, On an investment-consumption model with transaction costs, SIAM Journal on Control and Optimization, 34 (1996), 329-364.  doi: 10.1137/S0363012993247159.  Google Scholar

[2]

P. Albrecht and R. Maurer, Self-annuitization, consumption shortfall in retirement and asset allocation: The annuity benchmark, Journal of Pension Economics and Finance, 1 (2002), 269-288.  doi: 10.1017/S1474747202001117.  Google Scholar

[3]

P. BattocchioF. Menoncin and O. Scaillet, Optimal asset allocation for pension funds under mortality risk during the accumulation and decumulation phases, Annals of Operations Research, 152 (2007), 141-165.  doi: 10.1007/s10479-006-0144-2.  Google Scholar

[4]

E. Bayraktar and V. R. Young, Minimizing the probability of lifetime ruin with deferred life annuities, North American Actuarial Journal, 13 (2009), 141-154.  doi: 10.1080/10920277.2009.10597543.  Google Scholar

[5]

M. S. Bazaraa, H. D. Sherali and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, Wiley Interscience, New Jersey, 2006. doi: 10.1002/0471787779.  Google Scholar

[6]

D. BlakeA. J. G. Cairns and K. Dowd, Pensionmetrics 2: Stochastic pension plan design during the distribution phase, Insurance: Mathematics and Economics, 33 (2003), 29-47.  doi: 10.1016/S0167-6687(03)00141-0.  Google Scholar

[7]

J. R. Brown, Private pensions, mortality risk, and the decision to annuitize, Journal of Public Economics, 82 (2001), 29-62.  doi: 10.3386/w7191.  Google Scholar

[8]

O. L. V. Costa and R. B. Nabholz, Multiperiod mean-variance optimization with intertemporal restrictions, Journal of Optimization Theory and Applications, 134 (2007), 257-274.  doi: 10.1007/s10957-007-9233-x.  Google Scholar

[9]

H. Dadashi, Optimal investment-consumption problem post-retirement with a minimum guarantee, Working paper, arXiv: 1803.00611, 2018. doi: 10.1016/j.cam.2019.02.027.  Google Scholar

[10]

M. Di GiacintoS. FedericoF. Gozzi and E. Vigna, Income drawdown option with minimum guarantee, European Journal of Operational Research, 234 (2014), 610-624.  doi: 10.1016/j.ejor.2013.10.026.  Google Scholar

[11]

P. Emms, Relative choice models for income drawdown in a defined contribution pension scheme, North American Actuarial Journal, 14 (2010), 176-197.  doi: 10.1080/10920277.2010.10597584.  Google Scholar

[12]

P. Emms and S. Haberman, Income drawdown schemes for a defined-contribution pension plan, The Journal of Risk and Insurance, 75 (2008), 739-761.  doi: 10.1080/10920277.2010.10597584.  Google Scholar

[13]

A. Finkelstein and J. Poterba, Selection effects in the United Kingdom individual annuities market, Economic Journal, 112 (2002), 28-50.  doi: 10.1111/1468-0297.0j672.  Google Scholar

[14]

A. M. Geoffrion, Duality in nonlinear programming: A simplified application-oriented development, SIAM Review, 13 (1971), 1-37.  doi: 10.1137/1013001.  Google Scholar

[15]

R. GerrardS. Haberman and E. Vigna, Optimal investment choices post-retirement in a defined contribution pension scheme, Insurance: Mathematics and Economics, 35 (2004), 321-342.  doi: 10.1016/j.insmatheco.2004.06.002.  Google Scholar

[16]

R. GerrardS. Haberman and E. Vigna, The management of decumulation risks in a defined contribution pension plan, North American Actuarial Journal, 10 (2006), 84-110.  doi: 10.1080/10920277.2006.10596241.  Google Scholar

[17]

R. GerrardB. Høgaard and E. Vigna, Choosing the optimal annuitization time post retirement, Quantitative Finance, 12 (2012), 1143-1159.  doi: 10.1080/14697680903358248.  Google Scholar

[18]

J. InkmannP. Lopes and A. Michaelides, How deep is the annuity market participation puzzle?, The Review of Financial Studies, 24 (2011), 279-319.   Google Scholar

[19]

C. W. LinL. Zeng and H. L. Wu, Multi-period portfolio optimization in a defined contribution pension plan during the decumulation phase, J. Ind. Manag. Optim., 15 (2019), 401-427.  doi: 10.3934/jimo.2018059.  Google Scholar

[20]

L. M. Lockwood, Bequest motives and the annuity puzzle, Review of Economic Dynamics, 15 (2012), 226-243.  doi: 10.1016/j.red.2011.03.001.  Google Scholar

[21]

F. Menoncin and E. Vigna, Mean-variance target-based optimisation for defined contribution pension schemes in a stochastic framework, Insurance: Mathmatics and Economics, 76 (2017), 172-184.  doi: 10.1016/j.insmatheco.2017.08.002.  Google Scholar

[22]

M. A. Milevsky, Optimal annuitization policies: Analysis of the options, North American Actuarial Journal, 5 (2001), 57-69.  doi: 10.1080/10920277.2001.10595953.  Google Scholar

[23]

M. A. Milevsky and C. Robinson, Self-annuitization and ruin in retirement, North American Actuarial Journal, 4 (2000), 113-129.  doi: 10.1080/10920277.2000.10595940.  Google Scholar

[24]

M. A. MilevskyK. S. Moore and V. R. Young, Optimal asset allocation and ruin minimization annuitization strategies, Mathematical Finance, 16 (2006), 647-671.  doi: 10.1016/j.jedc.2006.11.003.  Google Scholar

[25]

M. A. Milevsky and V. R. Young, Annuitization and asset allocation, Journal of Economic Dynamics and Control, 31 (2007), 3138-3177.  doi: 10.1016/j.jedc.2006.11.003.  Google Scholar

[26]

G. Stabile, Optimal timing of the annuity purchase: combined stochastic control and optimal stopping problem, International Journal of Theoretical and Applied Finance, 9 (2006), 151-170.  doi: 10.1142/S0219024906003524.  Google Scholar

[27]

B. Z. TemocinR. Korn and A. S. Selcuk-Kestel, Constant proportion portfolio insurance in defined contribution pension plan management under discrete-time trading, Annals of Operations Research, 266 (2018), 329-348.  doi: 10.1007/s10479-017-2449-8.  Google Scholar

[28]

E. Vigna, On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.  doi: 10.1080/14697688.2012.708778.  Google Scholar

[29]

H. L. Wu and Y. Zeng, Equilibrium investment strategy for defined-contribution pension schemes with generalized mean-variance criterion and mortality risk, Insurance: Mathematics and Economics, 64 (2015), 396-408.  doi: 10.1016/j.insmatheco.2015.07.007.  Google Scholar

[30]

X. Y. Zhang and J. Y. Guo, The role of inflation-indexed bond in optimal management of defined contribution pension plan during the decumulation phase, Risks, 24 (2018).  doi: 10.3390/risks6020024.  Google Scholar

[31]

S. S. ZhuD. Li and S. Y. Wang, Risk control over bankruptcy in dynamic portfolio selection: A generalized mean-variance formulation, IEEE Transactions on Automatic Control, 49 (2004), 447-457.  doi: 10.1109/TAC.2004.824474.  Google Scholar

Figure 1.  $ \eta_n- {{\rm{E}}}_{0,x_0}\left(X^{\tilde\pi}_{n}\right) $, $ n = 1,2,\ldots,T $
Table 1.  The targets over time
$ \eta_1=198747 $ $ \eta_2=197494 $ $ \eta_3=196241 $ $ \eta_4=194988 $ $ \eta_5=193735 $
$ \eta_6=192482 $ $ \eta_7=191229 $ $ \eta_8=189976 $ $ \eta_9=188723 $ $ \eta_{10}=187470 $
$ \eta_{11}=186217 $ $ \eta_{12}=184964 $ $ \eta_{13}=183711 $ $ \eta_{14}=182458 $ $ \eta_{15}=181205 $
$ \eta_1=198747 $ $ \eta_2=197494 $ $ \eta_3=196241 $ $ \eta_4=194988 $ $ \eta_5=193735 $
$ \eta_6=192482 $ $ \eta_7=191229 $ $ \eta_8=189976 $ $ \eta_9=188723 $ $ \eta_{10}=187470 $
$ \eta_{11}=186217 $ $ \eta_{12}=184964 $ $ \eta_{13}=183711 $ $ \eta_{14}=182458 $ $ \eta_{15}=181205 $
Table 2.  The targets over time
$ \eta_1=201356 $ $ \eta_2=202333 $ $ \eta_3=202942 $ $ \eta_4=203160 $ $ \eta_5=202960 $
$ \eta_6=202362 $ $ \eta_7=201386 $ $ \eta_8=200057 $ $ \eta_9=198330 $ $ \eta_{10}=196284 $
$ \eta_{11}=193886 $ $ \eta_{12}=191191 $ $ \eta_{13}=188231 $ $ \eta_{14}=184908 $ $ \eta_{15}=181193 $
$ \eta_1=201356 $ $ \eta_2=202333 $ $ \eta_3=202942 $ $ \eta_4=203160 $ $ \eta_5=202960 $
$ \eta_6=202362 $ $ \eta_7=201386 $ $ \eta_8=200057 $ $ \eta_9=198330 $ $ \eta_{10}=196284 $
$ \eta_{11}=193886 $ $ \eta_{12}=191191 $ $ \eta_{13}=188231 $ $ \eta_{14}=184908 $ $ \eta_{15}=181193 $
Table 3.  The frequencies that $ X_{T}/ $ä$ _{75} $$ <\zeta_0 $
The first decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n)=0.4 $ $ p_1\; \; \text{Our model} $ 0.2774 0.2661 0.2535
$ p_2\; \; \text{Target-based model} $ 0.5394 0.4597 0.3975
$ {{\rm{Var}}}(R_n)=0.6 $ $ p_1\; \; \text{Our model} $ 0.3300 0.3151 0.3024
$ p_2\; \; \text{Target-based model} $ 0.6624 0.5736 0.4957
$ {{\rm{Var}}}(R_n)=0.8 $ $ p_1\; \; \text{Our model} $ 0.3661 0.3507 0.3360
$ p_2\; \; \text{Target-based model} $ 0.7428 0.6532 0.5672
The second decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n)=0.4 $ $ p_1\; \; \text{Our model} $ 0.2759 0.2611 0.2523
$ p_2\; \; \text{Target-based model} $ 0.5125 0.4391 0.3760
$ {{\rm{Var}}}(R_n)=0.6 $ $ p_1\; \; \text{Our model} $ 0.3302 0.3167 0.3090
$ p_2\; \; \text{Target-based model} $ 0.6395 0.5450 0.4763
$ {{\rm{Var}}}(R_n)=0.8 $ $ p_1\; \; \text{Our model} $ 0.3641 0.3545 0.3431
$ p_2\; \; \text{Target-based model} $ 0.7178 0.6313 0.5508
The first decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n)=0.4 $ $ p_1\; \; \text{Our model} $ 0.2774 0.2661 0.2535
$ p_2\; \; \text{Target-based model} $ 0.5394 0.4597 0.3975
$ {{\rm{Var}}}(R_n)=0.6 $ $ p_1\; \; \text{Our model} $ 0.3300 0.3151 0.3024
$ p_2\; \; \text{Target-based model} $ 0.6624 0.5736 0.4957
$ {{\rm{Var}}}(R_n)=0.8 $ $ p_1\; \; \text{Our model} $ 0.3661 0.3507 0.3360
$ p_2\; \; \text{Target-based model} $ 0.7428 0.6532 0.5672
The second decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n)=0.4 $ $ p_1\; \; \text{Our model} $ 0.2759 0.2611 0.2523
$ p_2\; \; \text{Target-based model} $ 0.5125 0.4391 0.3760
$ {{\rm{Var}}}(R_n)=0.6 $ $ p_1\; \; \text{Our model} $ 0.3302 0.3167 0.3090
$ p_2\; \; \text{Target-based model} $ 0.6395 0.5450 0.4763
$ {{\rm{Var}}}(R_n)=0.8 $ $ p_1\; \; \text{Our model} $ 0.3641 0.3545 0.3431
$ p_2\; \; \text{Target-based model} $ 0.7178 0.6313 0.5508
Table 4.  The gap between $ p_1 $ and $ p_2 $
The first decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n)=0.4 $ $ p_2-p_1 $ 0.2620 0.1936 0.1440
$ {{\rm{Var}}}(R_n)=0.6 $ $ p_2-p_1 $ 0.3324 0.2585 0.1933
$ {{\rm{Var}}}(R_n)=0.8 $ $ p_2-p_1 $ 0.3767 0.3025 0.2312
The second decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n)=0.4 $ $ p_2-p_1 $ 0.2366 0.1780 0.1237
$ {{\rm{Var}}}(R_n)=0.6 $ $ p_2-p_1 $ 0.3093 0.2283 0.1673
$ {{\rm{Var}}}(R_n)=0.8 $ $ p_2-p_1 $ 0.3537 0.2768 0.2077
The first decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n)=0.4 $ $ p_2-p_1 $ 0.2620 0.1936 0.1440
$ {{\rm{Var}}}(R_n)=0.6 $ $ p_2-p_1 $ 0.3324 0.2585 0.1933
$ {{\rm{Var}}}(R_n)=0.8 $ $ p_2-p_1 $ 0.3767 0.3025 0.2312
The second decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n)=0.4 $ $ p_2-p_1 $ 0.2366 0.1780 0.1237
$ {{\rm{Var}}}(R_n)=0.6 $ $ p_2-p_1 $ 0.3093 0.2283 0.1673
$ {{\rm{Var}}}(R_n)=0.8 $ $ p_2-p_1 $ 0.3537 0.2768 0.2077
Table 5.  The frequencies that $ X_{T}/ $ä$ _{75} $$ \ge k\zeta_0 $
The first decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n) = 0.4 $ $ g_1\; \; \text{Our model} $ 0.5717 0.5725 0.5762
$ g_2\; \; \text{Target-based model} $ 0.0038 0.0045 0.0040
$ {{\rm{Var}}}(R_n) = 0.6 $ $ g_1\; \; \text{Our model} $ 0.5458 0.5466 0.5493
$ g_2\; \; \text{Target-based model} $ 0.0036 0.0028 0.0027
$ {{\rm{Var}}}(R_n) = 0.8 $ $ g_1\; \; \text{Our model} $ 0.5198 0.5167 0.5250
$ g_2\; \; \text{Target-based model} $ 0.0037 0.0029 0.0027
The second decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n) = 0.4 $ $ g_1\; \; \text{Our model} $ 0.3042 0.4329 0.5427
$ g_2\; \; \text{Target-based model} $ 0.0001 0.0004 0.0018
$ {{\rm{Var}}}(R_n) = 0.6 $ $ g_1\; \; \text{Our model} $ 0.3530 0.4405 0.5220
$ g_2\; \; \text{Target-based model} $ 0.0003 0.00045 0.0019
$ {{\rm{Var}}}(R_n) = 0.8 $ $ g_1\; \; \text{Our model} $ 0.3617 0.4293 0.5033
$ g_2\; \; \text{Target-based model} $ 0.00005 0.0003 0.0013
The first decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n) = 0.4 $ $ g_1\; \; \text{Our model} $ 0.5717 0.5725 0.5762
$ g_2\; \; \text{Target-based model} $ 0.0038 0.0045 0.0040
$ {{\rm{Var}}}(R_n) = 0.6 $ $ g_1\; \; \text{Our model} $ 0.5458 0.5466 0.5493
$ g_2\; \; \text{Target-based model} $ 0.0036 0.0028 0.0027
$ {{\rm{Var}}}(R_n) = 0.8 $ $ g_1\; \; \text{Our model} $ 0.5198 0.5167 0.5250
$ g_2\; \; \text{Target-based model} $ 0.0037 0.0029 0.0027
The second decision mechanism of targets
Final target $ 1.5\zeta_0 $ä$ _{75} $ $ 1.7\zeta_0 $ä$ _{75} $ $ 2\zeta_0 $ä$ _{75} $
$ {{\rm{Var}}}(R_n) = 0.4 $ $ g_1\; \; \text{Our model} $ 0.3042 0.4329 0.5427
$ g_2\; \; \text{Target-based model} $ 0.0001 0.0004 0.0018
$ {{\rm{Var}}}(R_n) = 0.6 $ $ g_1\; \; \text{Our model} $ 0.3530 0.4405 0.5220
$ g_2\; \; \text{Target-based model} $ 0.0003 0.00045 0.0019
$ {{\rm{Var}}}(R_n) = 0.8 $ $ g_1\; \; \text{Our model} $ 0.3617 0.4293 0.5033
$ g_2\; \; \text{Target-based model} $ 0.00005 0.0003 0.0013
Table 6.  The frequencies of bankruptcies–20000 simulations
The first decision mechanism of targets
$ \eta_T=1.5\zeta_0 $ä$ _{75} $
Events Our model Target-based model
Number of simulations(Frequencies) Number of simulations(Frequencies)
$ S=0 $ 16355(0.8177) 19774(0.9887)
$ S\neq 0 $ 3645(0.1823) 226(0.0113)
Our model Target-based model
Mean of $ S $ 0.6833 0.0181
$ \eta_T=2.0\zeta_0 $ä$ _{75} $
Events Our model Target-based model
Number of simulations(Frequencies) Number of simulations(Frequencies)
$ S=0 $ 14424(0.7212) 18909(0.9455)
$ S\neq 0 $ 5576(0.2788) 1091(0.0546)
Our model Target-based model
Mean of $ S $ 1.3019 0.1135
The second decision mechanism of targets
$ \eta_T=1.5\zeta_0 $ä$ _{75} $
Events Our model Target-based model
Number of simulations(Frequencies) Number of simulations(Frequencies)
$ S=0 $ 16270(0.8135) 19667(0.9833)
$ S\neq 0 $ 3730(0.1865) 333(0.0167)
Our model Target-based model
Mean of $ S $ 0.8719 0.0297
$ \eta_T=2.0\zeta_0 $ä$ _{75} $
Events Our model Target-based model
Number of simulations(Frequencies) Number of simulations(Frequencies)
$ S=0 $ 14118(0.7059) 18726(0.9363)
$ S\neq 0 $ 5882(0.2941) 1274(0.0637)
Our model Target-based model
Mean of $ S $ 1.6798 0.1457
The first decision mechanism of targets
$ \eta_T=1.5\zeta_0 $ä$ _{75} $
Events Our model Target-based model
Number of simulations(Frequencies) Number of simulations(Frequencies)
$ S=0 $ 16355(0.8177) 19774(0.9887)
$ S\neq 0 $ 3645(0.1823) 226(0.0113)
Our model Target-based model
Mean of $ S $ 0.6833 0.0181
$ \eta_T=2.0\zeta_0 $ä$ _{75} $
Events Our model Target-based model
Number of simulations(Frequencies) Number of simulations(Frequencies)
$ S=0 $ 14424(0.7212) 18909(0.9455)
$ S\neq 0 $ 5576(0.2788) 1091(0.0546)
Our model Target-based model
Mean of $ S $ 1.3019 0.1135
The second decision mechanism of targets
$ \eta_T=1.5\zeta_0 $ä$ _{75} $
Events Our model Target-based model
Number of simulations(Frequencies) Number of simulations(Frequencies)
$ S=0 $ 16270(0.8135) 19667(0.9833)
$ S\neq 0 $ 3730(0.1865) 333(0.0167)
Our model Target-based model
Mean of $ S $ 0.8719 0.0297
$ \eta_T=2.0\zeta_0 $ä$ _{75} $
Events Our model Target-based model
Number of simulations(Frequencies) Number of simulations(Frequencies)
$ S=0 $ 14118(0.7059) 18726(0.9363)
$ S\neq 0 $ 5882(0.2941) 1274(0.0637)
Our model Target-based model
Mean of $ S $ 1.6798 0.1457
Table 7.  Comparison summary
The first decision mechanism of targets
Comparison items Our model Target-based model Times
Frequencies that $ X_{T}/ $ä$ _{75} $$<\zeta_0 $
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.2774 0.5394 0.5143
Frequencies that $ X_{T}/ $ä$ _{75} $$ \geq k\zeta_0 $
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.5717 0.0038 150.4
Bankruptcy probabilities
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.1823 0.0113 16.63
Frequencies that $ X_{T}/ $ä$ _{75} $$<\zeta_0 $
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.2535 0.3975 0.6377
Frequencies that $ X_{T}/ $ä$ _{75} $$ \geq k\zeta_0 $
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.5762 0.0040 144.05
Bankruptcy probabilities
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.2788 0.0546 5.106
The second decision mechanism of targets
Comparison items Our model Target-based model Times
Frequencies that $ X_{T}/ $ä$ _{75} $$<\zeta_0 $
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.2759 0.5125 0.5383
Frequencies that $ X_{T}/ $ä$ _{75} $$ \geq k\zeta_0 $
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.3042 0.0001 3042
Bankruptcy probabilities
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.1865 0.0167 11.17
Frequencies that $ X_{T}/ $ä$ _{75} $$<\zeta_0 $
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.2523 0.3760 0.6710
Frequencies that $ X_{T}/ $ä$ _{75} $$ \geq k\zeta_0 $
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.5427 0.0018 301.5
Bankruptcy probabilities
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.2941 0.0637 4.617
The first decision mechanism of targets
Comparison items Our model Target-based model Times
Frequencies that $ X_{T}/ $ä$ _{75} $$<\zeta_0 $
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.2774 0.5394 0.5143
Frequencies that $ X_{T}/ $ä$ _{75} $$ \geq k\zeta_0 $
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.5717 0.0038 150.4
Bankruptcy probabilities
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.1823 0.0113 16.63
Frequencies that $ X_{T}/ $ä$ _{75} $$<\zeta_0 $
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.2535 0.3975 0.6377
Frequencies that $ X_{T}/ $ä$ _{75} $$ \geq k\zeta_0 $
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.5762 0.0040 144.05
Bankruptcy probabilities
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.2788 0.0546 5.106
The second decision mechanism of targets
Comparison items Our model Target-based model Times
Frequencies that $ X_{T}/ $ä$ _{75} $$<\zeta_0 $
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.2759 0.5125 0.5383
Frequencies that $ X_{T}/ $ä$ _{75} $$ \geq k\zeta_0 $
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.3042 0.0001 3042
Bankruptcy probabilities
$ \eta_T=1.5\zeta_0 $ä$ _{75} $ 0.1865 0.0167 11.17
Frequencies that $ X_{T}/ $ä$ _{75} $$<\zeta_0 $
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.2523 0.3760 0.6710
Frequencies that $ X_{T}/ $ä$ _{75} $$ \geq k\zeta_0 $
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.5427 0.0018 301.5
Bankruptcy probabilities
$ \eta_T=2.0\zeta_0 $ä$ _{75} $ 0.2941 0.0637 4.617
[1]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[2]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[3]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[4]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[5]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[6]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[7]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[8]

Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038

[9]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[10]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[11]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[12]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[13]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[14]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[15]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[16]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[17]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[18]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[19]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[20]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (102)
  • HTML views (582)
  • Cited by (0)

Other articles
by authors

[Back to Top]