
-
Previous Article
A zero-forcing beamforming based time switching protocol for wireless powered internet of things system
- JIMO Home
- This Issue
-
Next Article
Multi-period optimal investment choice post-retirement with inter-temporal restrictions in a defined contribution pension plan
A two-priority single server retrial queue with additional items
1. | Department of Mathematics, S. N. College, Chempazhanthy, Trivandrum, Kerala-695587, India |
2. | Belarusian State University, 4, Nezavisimosti Ave., Minsk, 220030, Belarus |
3. | Peoples Friendship University of Russia, 6 Miklukho-Maklaya St, Moscow, 117198, Russia |
4. | Department of Mathematics, CMS College, Kottayam-686001, India |
In this paper, we study a priority queueing-inventory problem with two types of customers. Arrival of customers follows Marked Markovian arrival process and service times have phase-type distribution with parameters depending on the type of customer in service. For service of each type of customer, a certain number of additional items are needed. High priority customers do not have waiting space and so leave the system when on their arrival a priority 1 customer is in service or the number of available additional items is less than the required threshold. Preemptive priority is assumed. Type 2 customers, encountering a busy server or idle with the number of available additional items less than a threshold, go to an orbit of infinite capacity to retry for service. The customers in orbit are non-persistent: if on retrial the server is found to be busy/idle with the number of additional items less than the threshold, this customer abandons the system with certain probability. Such a system represents an accurate enough model of many real-world systems, including wireless sensor networks and system of cognitive radio with energy harvesting and healthcare systems. The probability distribution of the system states is computed, using which several of the characteristics are derived. A detailed numerical study of the system, including the analysis of the influence of the threshold, is performed.
References:
[1] |
A. Arafa, T. Tong, M. Fu, S. Ulukus and W. Chen,
Delay minimal policies in energy harvesting communication systems, IEEE Transactions on Communications, 66 (2018), 2918-2930.
|
[2] |
J. R. Artalejo and A. Gomez Corral, Retrial Queueing Systems: A Computational Approach, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-78725-9. |
[3] |
J. Baek, O. Dudina and C. Kim,
Queueing system with heterogeneous impatient customers and consumable additional items, International Journal of Applied Mathematics and Computer Science, 27 (2017), 367-384.
doi: 10.1515/amcs-2017-0026. |
[4] |
L. Boutarfa and N. Djellab,
On the performance of the $M_1, M_2/G_1, G_2/1$ retrial queue with pre-emptive resume policy, Yugoslav Journal of Operations Research, 25 (2015), 153-164.
doi: 10.2298/YJOR130217001B. |
[5] |
B. Cardoen, E. Demeulemeester and J. Belien,
Operating room planning and scheduling: A literature review, European Journal of Operational Research, 201 (2010), 921-932.
doi: 10.1016/j.ejor.2012.11.029. |
[6] |
S. R. Chakravarthy, The batch Markovian arrival process: A review and future work, Advances in Probability Theory and Stochastic Process: Notable Publications (eds. A. Krishnamoorthy, et al.), New Jersey, 2001, 21–49. |
[7] |
B. D. Choi and Y. Chang,
Single server retrial queues with priority customers, Mathematical and Computer Modelling, 30 (1999), 7-32.
doi: 10.1016/S0895-7177(99)00129-6. |
[8] |
E. De Cuypere, K. De Turck and D. Fiems,
A queueing model of an energy harvesting sensor node with data buffering, Telecommunication Systems, 67 (2018), 281-295.
|
[9] |
I. Dimitrious,
Analysis of a priority retrial queue with dependent vacation scheme and application to power saving in wireless communication systems, The Computer Journal, 56 (2015), 1363-1380.
|
[10] |
A. N. Dudin and V. I. Klimenok,
Queueing systems with passive servers, International Journal of Stochastic Analysis, 9 (1996), 185-204.
doi: 10.1155/S1048953396000184. |
[11] |
A. N. Dudin, M. H. Lee, O. Dudina and S. K. Lee,
Analysis of priority retrial queue with many types of customers and servers reservation as a model of cognitive radio system, IEEE Transactions on Communications, 65 (2017), 186-199.
|
[12] |
G. I. Falin and J. G. C. Templeton, Retrial Queues, Chapman & Hall, London, 1997. |
[13] |
G. I. Falin, J. R. Artalejo and M. Martin,
On the single server retrial queue with priority customers, Queueing Systems, 14 (1993), 439-455.
doi: 10.1007/BF01158878. |
[14] |
S. Gao,
A preemptive priority retrial queue with two classes of customers and general retrial times, Operational Research, 15 (2015), 233-251.
|
[15] |
Q. M. He, Queues with marked customers, Advances in Applied Probability, (1996), 567–587.
doi: 10.2307/1428072. |
[16] |
C. Kim, S. Dudin and V. Klimenok,
The $MAP/PH/1/N$ queue with flows of customers as model for traffic control in telecommunication networks, Performance Evaluation, 66 (2009), 564-579.
|
[17] |
C. Kim, S. Dudin and V. Klimenok,
Queueing system with batch arrival of customers in sessions, Computers and Industrial Engineering, 62 (2012), 890-897.
|
[18] |
J. Kim and B. Kim,
A survey of retrial queueing systems, Annals of Operations Research, 247 (2016), 3-36.
doi: 10.1007/s10479-015-2038-7. |
[19] |
V. I. Klimenok and A. N. Dudin,
Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory, Queueing Systems, 54 (2006), 245-259.
doi: 10.1007/s11134-006-0300-z. |
[20] |
A. Krishnamoorthy, B. Binitha and D. Shajin,
A revisit to queueing-inventory system with reservation, cancellation and common life time, OPSEARCH, 54 (2017), 336-350.
|
[21] |
A. Krishnamoorthy, D. Shajin and B. Lakshmy, On a queueing-inventory with reservation, cancellation, common life time and retrial, Annals of Operations Research, (2016), 1–25.
doi: 10.1007/s10479-015-1849-x. |
[22] |
A. Krishnamoorthy, D. Shajin and B. Lakshmy,
Product form solution for some queueing-inventory supply chain problem, OPSEARCH, 53 (2016), 85-102.
doi: 10.1007/s12597-015-0215-8. |
[23] |
C. Langaris and E. Moutzoukis,
A retrial queue with structured batch arrivals, priorities and server vacations, Queueing Systems, 20 (1995), 341-368.
doi: 10.1007/BF01245324. |
[24] |
M. Liu, M. Feng and C. Y. Wong,
Flexible service policies for a Markov inventory system with two demand classes, International Journal of Production Economics, 151 (2014), 180-185.
|
[25] |
K. Patil, K. De Turck and D. Fiems,
A two-queue model for optimising the value of information in energy-harvesting sensor networks, Performance Evaluation, 119 (2018), 27-42.
doi: 10.1016/j.orl.2018.04.002. |
[26] |
T. Phung-Duc, Retrial queueing models: A survey on theory and applications, (to appear) in Stochastic Operations Research in Business and Industry (eds. T. Dohi, K. Ano and S. Kasahara), WSP, 2017. |
[27] |
J. Walraevens, D. Claeys and T. Phung-Duc,
Asymptotics of queue length distributions in priority retrial queues, Performance Evaluation, 127 (2018), 235-252.
|
[28] |
Y. Wang, X. Tang and T. Wang,
A unified QoS and security provisioning framework for wiretap cognitive radio networks: A statistical queueing analysis approach, IEEE Transactions on Wireless Communications, 18 (2019), 1548-1565.
doi: 10.1109/TWC.2019.2893381. |
[29] |
N. Zhao and Z. Lian,
A queueing-inventory system with two classes of customers, International Journal of Production Economics, 129 (2011), 225-231.
|
show all references
References:
[1] |
A. Arafa, T. Tong, M. Fu, S. Ulukus and W. Chen,
Delay minimal policies in energy harvesting communication systems, IEEE Transactions on Communications, 66 (2018), 2918-2930.
|
[2] |
J. R. Artalejo and A. Gomez Corral, Retrial Queueing Systems: A Computational Approach, Springer, Berlin, 2008.
doi: 10.1007/978-3-540-78725-9. |
[3] |
J. Baek, O. Dudina and C. Kim,
Queueing system with heterogeneous impatient customers and consumable additional items, International Journal of Applied Mathematics and Computer Science, 27 (2017), 367-384.
doi: 10.1515/amcs-2017-0026. |
[4] |
L. Boutarfa and N. Djellab,
On the performance of the $M_1, M_2/G_1, G_2/1$ retrial queue with pre-emptive resume policy, Yugoslav Journal of Operations Research, 25 (2015), 153-164.
doi: 10.2298/YJOR130217001B. |
[5] |
B. Cardoen, E. Demeulemeester and J. Belien,
Operating room planning and scheduling: A literature review, European Journal of Operational Research, 201 (2010), 921-932.
doi: 10.1016/j.ejor.2012.11.029. |
[6] |
S. R. Chakravarthy, The batch Markovian arrival process: A review and future work, Advances in Probability Theory and Stochastic Process: Notable Publications (eds. A. Krishnamoorthy, et al.), New Jersey, 2001, 21–49. |
[7] |
B. D. Choi and Y. Chang,
Single server retrial queues with priority customers, Mathematical and Computer Modelling, 30 (1999), 7-32.
doi: 10.1016/S0895-7177(99)00129-6. |
[8] |
E. De Cuypere, K. De Turck and D. Fiems,
A queueing model of an energy harvesting sensor node with data buffering, Telecommunication Systems, 67 (2018), 281-295.
|
[9] |
I. Dimitrious,
Analysis of a priority retrial queue with dependent vacation scheme and application to power saving in wireless communication systems, The Computer Journal, 56 (2015), 1363-1380.
|
[10] |
A. N. Dudin and V. I. Klimenok,
Queueing systems with passive servers, International Journal of Stochastic Analysis, 9 (1996), 185-204.
doi: 10.1155/S1048953396000184. |
[11] |
A. N. Dudin, M. H. Lee, O. Dudina and S. K. Lee,
Analysis of priority retrial queue with many types of customers and servers reservation as a model of cognitive radio system, IEEE Transactions on Communications, 65 (2017), 186-199.
|
[12] |
G. I. Falin and J. G. C. Templeton, Retrial Queues, Chapman & Hall, London, 1997. |
[13] |
G. I. Falin, J. R. Artalejo and M. Martin,
On the single server retrial queue with priority customers, Queueing Systems, 14 (1993), 439-455.
doi: 10.1007/BF01158878. |
[14] |
S. Gao,
A preemptive priority retrial queue with two classes of customers and general retrial times, Operational Research, 15 (2015), 233-251.
|
[15] |
Q. M. He, Queues with marked customers, Advances in Applied Probability, (1996), 567–587.
doi: 10.2307/1428072. |
[16] |
C. Kim, S. Dudin and V. Klimenok,
The $MAP/PH/1/N$ queue with flows of customers as model for traffic control in telecommunication networks, Performance Evaluation, 66 (2009), 564-579.
|
[17] |
C. Kim, S. Dudin and V. Klimenok,
Queueing system with batch arrival of customers in sessions, Computers and Industrial Engineering, 62 (2012), 890-897.
|
[18] |
J. Kim and B. Kim,
A survey of retrial queueing systems, Annals of Operations Research, 247 (2016), 3-36.
doi: 10.1007/s10479-015-2038-7. |
[19] |
V. I. Klimenok and A. N. Dudin,
Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory, Queueing Systems, 54 (2006), 245-259.
doi: 10.1007/s11134-006-0300-z. |
[20] |
A. Krishnamoorthy, B. Binitha and D. Shajin,
A revisit to queueing-inventory system with reservation, cancellation and common life time, OPSEARCH, 54 (2017), 336-350.
|
[21] |
A. Krishnamoorthy, D. Shajin and B. Lakshmy, On a queueing-inventory with reservation, cancellation, common life time and retrial, Annals of Operations Research, (2016), 1–25.
doi: 10.1007/s10479-015-1849-x. |
[22] |
A. Krishnamoorthy, D. Shajin and B. Lakshmy,
Product form solution for some queueing-inventory supply chain problem, OPSEARCH, 53 (2016), 85-102.
doi: 10.1007/s12597-015-0215-8. |
[23] |
C. Langaris and E. Moutzoukis,
A retrial queue with structured batch arrivals, priorities and server vacations, Queueing Systems, 20 (1995), 341-368.
doi: 10.1007/BF01245324. |
[24] |
M. Liu, M. Feng and C. Y. Wong,
Flexible service policies for a Markov inventory system with two demand classes, International Journal of Production Economics, 151 (2014), 180-185.
|
[25] |
K. Patil, K. De Turck and D. Fiems,
A two-queue model for optimising the value of information in energy-harvesting sensor networks, Performance Evaluation, 119 (2018), 27-42.
doi: 10.1016/j.orl.2018.04.002. |
[26] |
T. Phung-Duc, Retrial queueing models: A survey on theory and applications, (to appear) in Stochastic Operations Research in Business and Industry (eds. T. Dohi, K. Ano and S. Kasahara), WSP, 2017. |
[27] |
J. Walraevens, D. Claeys and T. Phung-Duc,
Asymptotics of queue length distributions in priority retrial queues, Performance Evaluation, 127 (2018), 235-252.
|
[28] |
Y. Wang, X. Tang and T. Wang,
A unified QoS and security provisioning framework for wiretap cognitive radio networks: A statistical queueing analysis approach, IEEE Transactions on Wireless Communications, 18 (2019), 1548-1565.
doi: 10.1109/TWC.2019.2893381. |
[29] |
N. Zhao and Z. Lian,
A queueing-inventory system with two classes of customers, International Journal of Production Economics, 129 (2011), 225-231.
|







2 | 0.541687 | 1.367441 | 1.684218 | 1.271213 |
4 | 0.549554 | 1.412635 | 1.703399 | 1.305689 |
6 | 0.5646816 | 1.518695 | 1.755786 | 1.403333 |
8 | 0.581552 | 1.588845 | 1.784279 | 1.466440 |
10 | 0.60139 | 1.626319 | 1.805897 | 1.509774 |
12 | 0.628908 | 1.656662 | 1.827878 | 1.551554 |
14 | 0.669292 | 1.682243 | 1.849624 | 1.590796 |
16 | 0.732318 | 1.709136 | 1.874669 | 1.631378 |
18 | 0.831686 | 1.742311 | 1.904638 | 1.674188 |
20 | 1.044837 | 1.802246 | 1.949755 | 1.728375 |
(A) Dependence of NO | ||||
2 | 15.265487 | 15.01827 | 12.685517 | 7.343982 |
4 | 15.360819 | 15.39104 | 13.30253 | 8.478718 |
6 | 15.489897 | 15.661518 | 13.504709 | 8.945458 |
8 | 15.707897 | 16.001991 | 13.742329 | 9.415827 |
10 | 16.008232 | 16.420983 | 13.98464 | 10.00213 |
12 | 16.376142 | 16.857811 | 14.170774 | 10.51655 |
14 | 16.821438 | 17.324321 | 14.475216 | 11.21957 |
16 | 17.34789 | 17.797588 | 14.7440311 | 11.92004 |
18 | 17.91796 | 18.255182 | 15.1044063 | 12.71894 |
20 | 18.51922 | 18.665273 | 15.5122786 | 13.58646 |
(B) Dependence of Nitem |
2 | 0.541687 | 1.367441 | 1.684218 | 1.271213 |
4 | 0.549554 | 1.412635 | 1.703399 | 1.305689 |
6 | 0.5646816 | 1.518695 | 1.755786 | 1.403333 |
8 | 0.581552 | 1.588845 | 1.784279 | 1.466440 |
10 | 0.60139 | 1.626319 | 1.805897 | 1.509774 |
12 | 0.628908 | 1.656662 | 1.827878 | 1.551554 |
14 | 0.669292 | 1.682243 | 1.849624 | 1.590796 |
16 | 0.732318 | 1.709136 | 1.874669 | 1.631378 |
18 | 0.831686 | 1.742311 | 1.904638 | 1.674188 |
20 | 1.044837 | 1.802246 | 1.949755 | 1.728375 |
(A) Dependence of NO | ||||
2 | 15.265487 | 15.01827 | 12.685517 | 7.343982 |
4 | 15.360819 | 15.39104 | 13.30253 | 8.478718 |
6 | 15.489897 | 15.661518 | 13.504709 | 8.945458 |
8 | 15.707897 | 16.001991 | 13.742329 | 9.415827 |
10 | 16.008232 | 16.420983 | 13.98464 | 10.00213 |
12 | 16.376142 | 16.857811 | 14.170774 | 10.51655 |
14 | 16.821438 | 17.324321 | 14.475216 | 11.21957 |
16 | 17.34789 | 17.797588 | 14.7440311 | 11.92004 |
18 | 17.91796 | 18.255182 | 15.1044063 | 12.71894 |
20 | 18.51922 | 18.665273 | 15.5122786 | 13.58646 |
(B) Dependence of Nitem |
2 | 0.075438 | 0.594164 | 0.621250 | 0.584869 |
4 | 0.069154 | 0.528047 | 0.612127 | 0.574752 |
6 | 0.053754 | 0.343713 | 0.526146 | 0.420849 |
8 | 0.044331 | 0.230872 | 0.488863 | 0.334311 |
10 | 0.041304 | 0.184474 | 0.466582 | 0.291888 |
12 | 0.039596 | 0.154385 | 0.442873 | 0.251298 |
14 | 0.039017 | 0.138246 | 0.426295 | 0.224901 |
16 | 0.038708 | 0.127744 | 0.407572 | 0.199159 |
18 | 0.038589 | 0.12157 | 0.392962 | 0.179236 |
20 | 0.038535 | 0.117919 | 0.37687 | 0.16082 |
(A) Dependence of ploss of p1loss | ||||
2 | 0.218984 | 0.596466 | 0.720285 | 0.570702 |
4 | 0.22019 | 0.599877 | 0.725534 | 0.58051 |
6 | 0.222009 | 0.60253 | 0.727949 | 0.584911 |
8 | 0.225624 | 0.60626 | 0.731018 | 0.590137 |
10 | 0.23144 | 0.611019 | 0.734444 | 0.596847 |
12 | 0.23998 | 0.616327 | 0.737665 | 0.6033 |
14 | 0.25284 | 0.62257 | 0.742163 | 0.61164 |
16 | 0.272944 | 0.630337 | 0.747311 | 0.620533 |
18 | 0.304933 | 0.641239 | 0.754921 | 0.631276 |
20 | 0.373814 | 0.662226 | 0.767272 | 0.645899 |
(B) Dependence of ploss of pitemloss |
2 | 0.075438 | 0.594164 | 0.621250 | 0.584869 |
4 | 0.069154 | 0.528047 | 0.612127 | 0.574752 |
6 | 0.053754 | 0.343713 | 0.526146 | 0.420849 |
8 | 0.044331 | 0.230872 | 0.488863 | 0.334311 |
10 | 0.041304 | 0.184474 | 0.466582 | 0.291888 |
12 | 0.039596 | 0.154385 | 0.442873 | 0.251298 |
14 | 0.039017 | 0.138246 | 0.426295 | 0.224901 |
16 | 0.038708 | 0.127744 | 0.407572 | 0.199159 |
18 | 0.038589 | 0.12157 | 0.392962 | 0.179236 |
20 | 0.038535 | 0.117919 | 0.37687 | 0.16082 |
(A) Dependence of ploss of p1loss | ||||
2 | 0.218984 | 0.596466 | 0.720285 | 0.570702 |
4 | 0.22019 | 0.599877 | 0.725534 | 0.58051 |
6 | 0.222009 | 0.60253 | 0.727949 | 0.584911 |
8 | 0.225624 | 0.60626 | 0.731018 | 0.590137 |
10 | 0.23144 | 0.611019 | 0.734444 | 0.596847 |
12 | 0.23998 | 0.616327 | 0.737665 | 0.6033 |
14 | 0.25284 | 0.62257 | 0.742163 | 0.61164 |
16 | 0.272944 | 0.630337 | 0.747311 | 0.620533 |
18 | 0.304933 | 0.641239 | 0.754921 | 0.631276 |
20 | 0.373814 | 0.662226 | 0.767272 | 0.645899 |
(B) Dependence of ploss of pitemloss |
2 | 0.036982 | 0.045292 | 0.042889 | 0.016605 |
4 | 0.037234 | 0.054023 | 0.043846 | 0.01701 |
6 | 0.03785 | 0.07846 | 0.054843 | 0.023166 |
8 | 0.038227 | 0.093433 | 0.059606 | 0.026628 |
10 | 0.038347 | 0.099601 | 0.062507 | 0.028324 |
12 | 0.038416 | 0.103602 | 0.06565 | 0.029948 |
14 | 0.038439 | 0.105748 | 0.06781 | 0.031004 |
16 | 0.038452 | 0.107144 | 0.07029 | 0.032034 |
18 | 0.038456 | 0.107965 | 0.07221 | 0.032831 |
20 | 0.038459 | 0.10845 | 0.07433 | 0.033567 |
(A) Dependence of p1busy loss | ||||
2 | 0.038456 | 0.548872 | 0.578361 | 0.568264 |
4 | 0.03192 | 0.474025 | 0.568281 | 0.557742 |
6 | 0.015904 | 0.265254 | 0.471303 | 0.397683 |
8 | 0.006105 | 0.13744 | 0.429257 | 0.307683 |
10 | 0.002956 | 0.084873 | 0.404075 | 0.263563 |
12 | 0.00118 | 0.050783 | 0.377223 | 0.22135 |
14 | 5.77E-4 | 0.032498 | 0.358485 | 0.193897 |
16 | 2.56E-4 | 0.020599 | 0.337281 | 0.167125 |
18 | 1.33E-4 | 0.013605 | 0.320755 | 0.146405 |
20 | 7.63E-5 | 0.009469 | 0.302539 | 0.127253 |
(B) Dependence of p1lack loss |
2 | 0.036982 | 0.045292 | 0.042889 | 0.016605 |
4 | 0.037234 | 0.054023 | 0.043846 | 0.01701 |
6 | 0.03785 | 0.07846 | 0.054843 | 0.023166 |
8 | 0.038227 | 0.093433 | 0.059606 | 0.026628 |
10 | 0.038347 | 0.099601 | 0.062507 | 0.028324 |
12 | 0.038416 | 0.103602 | 0.06565 | 0.029948 |
14 | 0.038439 | 0.105748 | 0.06781 | 0.031004 |
16 | 0.038452 | 0.107144 | 0.07029 | 0.032034 |
18 | 0.038456 | 0.107965 | 0.07221 | 0.032831 |
20 | 0.038459 | 0.10845 | 0.07433 | 0.033567 |
(A) Dependence of p1busy loss | ||||
2 | 0.038456 | 0.548872 | 0.578361 | 0.568264 |
4 | 0.03192 | 0.474025 | 0.568281 | 0.557742 |
6 | 0.015904 | 0.265254 | 0.471303 | 0.397683 |
8 | 0.006105 | 0.13744 | 0.429257 | 0.307683 |
10 | 0.002956 | 0.084873 | 0.404075 | 0.263563 |
12 | 0.00118 | 0.050783 | 0.377223 | 0.22135 |
14 | 5.77E-4 | 0.032498 | 0.358485 | 0.193897 |
16 | 2.56E-4 | 0.020599 | 0.337281 | 0.167125 |
18 | 1.33E-4 | 0.013605 | 0.320755 | 0.146405 |
20 | 7.63E-5 | 0.009469 | 0.302539 | 0.127253 |
(B) Dependence of p1lack loss |
0.1 | 0.758933 | 2.592361 | 3.261523 | 2.397430 |
0.2 | 0.549554 | 1.412635 | 1.703399 | 1.305689 |
0.3 | 0.441755 | 0.987633 | 1.162907 | 0.911481 |
0.4 | 0.372968 | 0.765297 | 0.886588 | 0.705013 |
0.5 | 0.324288 | 0.627350 | 0.718082 | 0.576937 |
0.6 | 0.287627 | 0.532879 | 0.604271 | 0.489305 |
0.7 | 0.258835 | 0.463871 | 0.522087 | 0.425367 |
0.8 | 0.235527 | 0.411117 | 0.459869 | 0.376551 |
0.9 | 0.216218 | 0.369402 | 0.411081 | 0.337998 |
1 | 0.199928 | 0.335543 | 0.371769 | 0.306743 |
(A) Dependence of NO | ||||
0.1 | 14.631235 | 15.054343 | 13.047518 | 8.294399 |
0.2 | 15.360819 | 15.391041 | 13.302530 | 8.478718 |
0.3 | 15.760671 | 15.548513 | 13.408673 | 8.583818 |
0.4 | 16.021155 | 15.649013 | 13.470799 | 8.656368 |
0.5 | 16.206952 | 15.721749 | 13.512953 | 8.710798 |
0.6 | 16.347252 | 15.778002 | 13.544014 | 8.753684 |
0.7 | 16.457467 | 15.823323 | 13.568133 | 8.788605 |
0.8 | 16.546609 | 15.860874 | 13.587549 | 8.817730 |
0.9 | 16.620347 | 15.892632 | 13.603596 | 8.842468 |
1 | 16.682445 | 15.919918 | 13.617128 | 8.863788 |
(B) Dependence of Nitem |
0.1 | 0.758933 | 2.592361 | 3.261523 | 2.397430 |
0.2 | 0.549554 | 1.412635 | 1.703399 | 1.305689 |
0.3 | 0.441755 | 0.987633 | 1.162907 | 0.911481 |
0.4 | 0.372968 | 0.765297 | 0.886588 | 0.705013 |
0.5 | 0.324288 | 0.627350 | 0.718082 | 0.576937 |
0.6 | 0.287627 | 0.532879 | 0.604271 | 0.489305 |
0.7 | 0.258835 | 0.463871 | 0.522087 | 0.425367 |
0.8 | 0.235527 | 0.411117 | 0.459869 | 0.376551 |
0.9 | 0.216218 | 0.369402 | 0.411081 | 0.337998 |
1 | 0.199928 | 0.335543 | 0.371769 | 0.306743 |
(A) Dependence of NO | ||||
0.1 | 14.631235 | 15.054343 | 13.047518 | 8.294399 |
0.2 | 15.360819 | 15.391041 | 13.302530 | 8.478718 |
0.3 | 15.760671 | 15.548513 | 13.408673 | 8.583818 |
0.4 | 16.021155 | 15.649013 | 13.470799 | 8.656368 |
0.5 | 16.206952 | 15.721749 | 13.512953 | 8.710798 |
0.6 | 16.347252 | 15.778002 | 13.544014 | 8.753684 |
0.7 | 16.457467 | 15.823323 | 13.568133 | 8.788605 |
0.8 | 16.546609 | 15.860874 | 13.587549 | 8.817730 |
0.9 | 16.620347 | 15.892632 | 13.603596 | 8.842468 |
1 | 16.682445 | 15.919918 | 13.617128 | 8.863788 |
(B) Dependence of Nitem |
0.1 | 0.086069 | 0.557286 | 0.619555 | 0.588222 |
0.2 | 0.069154 | 0.528047 | 0.612127 | 0.574752 |
0.3 | 0.061659 | 0.506329 | 0.607792 | 0.566495 |
0.4 | 0.057424 | 0.489551 | 0.604719 | 0.560590 |
0.5 | 0.054707 | 0.476222 | 0.602361 | 0.556081 |
0.6 | 0.052819 | 0.465381 | 0.600469 | 0.552495 |
0.7 | 0.051434 | 0.456390 | 0.598905 | 0.549560 |
0.8 | 0.050375 | 0.448809 | 0.597586 | 0.547105 |
0.9 | 0.049540 | 0.442329 | 0.596454 | 0.545017 |
1 | 0.048865 | 0.436726 | 0.595472 | 0.543215 |
(A) Dependence of p1loss | ||||
0.1 | 0.187902 | 0.582932 | 0.711872 | 0.560124 |
0.2 | 0.220190 | 0.599877 | 0.725534 | 0.580510 |
0.3 | 0.241291 | 0.606780 | 0.731699 | 0.590660 |
0.4 | 0.256630 | 0.610762 | 0.735528 | 0.597193 |
0.5 | 0.268448 | 0.613446 | 0.738236 | 0.601898 |
0.6 | 0.277902 | 0.615420 | 0.740290 | 0.605506 |
0.7 | 0.285673 | 0.616952 | 0.741918 | 0.608389 |
0.8 | 0.292192 | 0.618187 | 0.743249 | 0.610759 |
0.9 | 0.297748 | 0.619209 | 0.744361 | 0.612748 |
1 | 0.302546 | 0.620072 | 0.745308 | 0.614446 |
(B) Dependence of pitemloss |
0.1 | 0.086069 | 0.557286 | 0.619555 | 0.588222 |
0.2 | 0.069154 | 0.528047 | 0.612127 | 0.574752 |
0.3 | 0.061659 | 0.506329 | 0.607792 | 0.566495 |
0.4 | 0.057424 | 0.489551 | 0.604719 | 0.560590 |
0.5 | 0.054707 | 0.476222 | 0.602361 | 0.556081 |
0.6 | 0.052819 | 0.465381 | 0.600469 | 0.552495 |
0.7 | 0.051434 | 0.456390 | 0.598905 | 0.549560 |
0.8 | 0.050375 | 0.448809 | 0.597586 | 0.547105 |
0.9 | 0.049540 | 0.442329 | 0.596454 | 0.545017 |
1 | 0.048865 | 0.436726 | 0.595472 | 0.543215 |
(A) Dependence of p1loss | ||||
0.1 | 0.187902 | 0.582932 | 0.711872 | 0.560124 |
0.2 | 0.220190 | 0.599877 | 0.725534 | 0.580510 |
0.3 | 0.241291 | 0.606780 | 0.731699 | 0.590660 |
0.4 | 0.256630 | 0.610762 | 0.735528 | 0.597193 |
0.5 | 0.268448 | 0.613446 | 0.738236 | 0.601898 |
0.6 | 0.277902 | 0.615420 | 0.740290 | 0.605506 |
0.7 | 0.285673 | 0.616952 | 0.741918 | 0.608389 |
0.8 | 0.292192 | 0.618187 | 0.743249 | 0.610759 |
0.9 | 0.297748 | 0.619209 | 0.744361 | 0.612748 |
1 | 0.302546 | 0.620072 | 0.745308 | 0.614446 |
(B) Dependence of pitemloss |
0.1 | 0.036557 | 0.050253 | 0.043100 | 0.016471 |
0.2 | 0.037234 | 0.054023 | 0.043846 | 0.017010 |
0.3 | 0.037534 | 0.056868 | 0.044325 | 0.017340 |
0.4 | 0.037703 | 0.059078 | 0.044682 | 0.017576 |
0.5 | 0.037812 | 0.060838 | 0.044963 | 0.017757 |
0.6 | 0.037887 | 0.062272 | 0.045192 | 0.017900 |
0.7 | 0.037943 | 0.063462 | 0.045384 | 0.018018 |
0.8 | 0.037985 | 0.064466 | 0.045547 | 0.018116 |
0.9 | 0.038018 | 0.065324 | 0.045688 | 0.018199 |
1.0 | 0.038045 | 0.066067 | 0.045811 | 0.018271 |
(A) Dependence of p1busy loss | ||||
0.1 | 0.049511 | 0.507033 | 0.576455 | 0.571751 |
0.2 | 0.031920 | 0.474025 | 0.568281 | 0.557742 |
0.3 | 0.024125 | 0.449461 | 0.563466 | 0.549155 |
0.4 | 0.019721 | 0.430472 | 0.560037 | 0.543014 |
0.5 | 0.016895 | 0.415384 | 0.557398 | 0.538324 |
0.6 | 0.014932 | 0.403110 | 0.555277 | 0.534595 |
0.7 | 0.013491 | 0.392928 | 0.553521 | 0.531543 |
0.8 | 0.012390 | 0.384343 | 0.552038 | 0.528990 |
0.9 | 0.011521 | 0.377005 | 0.550766 | 0.526817 |
1.0 | 0.010820 | 0.370659 | 0.549661 | 0.524944 |
(B) Dependence of p1lack loss |
0.1 | 0.036557 | 0.050253 | 0.043100 | 0.016471 |
0.2 | 0.037234 | 0.054023 | 0.043846 | 0.017010 |
0.3 | 0.037534 | 0.056868 | 0.044325 | 0.017340 |
0.4 | 0.037703 | 0.059078 | 0.044682 | 0.017576 |
0.5 | 0.037812 | 0.060838 | 0.044963 | 0.017757 |
0.6 | 0.037887 | 0.062272 | 0.045192 | 0.017900 |
0.7 | 0.037943 | 0.063462 | 0.045384 | 0.018018 |
0.8 | 0.037985 | 0.064466 | 0.045547 | 0.018116 |
0.9 | 0.038018 | 0.065324 | 0.045688 | 0.018199 |
1.0 | 0.038045 | 0.066067 | 0.045811 | 0.018271 |
(A) Dependence of p1busy loss | ||||
0.1 | 0.049511 | 0.507033 | 0.576455 | 0.571751 |
0.2 | 0.031920 | 0.474025 | 0.568281 | 0.557742 |
0.3 | 0.024125 | 0.449461 | 0.563466 | 0.549155 |
0.4 | 0.019721 | 0.430472 | 0.560037 | 0.543014 |
0.5 | 0.016895 | 0.415384 | 0.557398 | 0.538324 |
0.6 | 0.014932 | 0.403110 | 0.555277 | 0.534595 |
0.7 | 0.013491 | 0.392928 | 0.553521 | 0.531543 |
0.8 | 0.012390 | 0.384343 | 0.552038 | 0.528990 |
0.9 | 0.011521 | 0.377005 | 0.550766 | 0.526817 |
1.0 | 0.010820 | 0.370659 | 0.549661 | 0.524944 |
(B) Dependence of p1lack loss |
0.1 | 1.5 | 0.959861 | 3.382764 | 4.300035 | 3.145578 |
0.2 | 0.75 | 1.328719 | 3.583343 | 4.430688 | 3.384015 |
0.3 | 0.5 | 1.628854 | 3.746986 | 4.534785 | 3.574155 |
0.4 | 0.375 | 1.881123 | 3.887829 | 4.623184 | 3.731486 |
0.5 | 0.3 | 2.098026 | 4.012896 | 4.700989 | 3.865063 |
0.6 | 0.25 | 2.287694 | 4.126279 | 4.771088 | 3.980639 |
0.7 | 0.2143 | 2.455731 | 4.230599 | 4.835292 | 4.082103 |
0.8 | 0.1875 | 2.606171 | 4.327642 | 4.89482 | 4.172209 |
0.9 | 0.1667 | 2.742017 | 4.418685 | 4.950534 | 4.252983 |
1 | 0.1500 | 2.865570 | 4.504674 | 5.003066 | 4.325962 |
0.1 | 1.5 | 0.959861 | 3.382764 | 4.300035 | 3.145578 |
0.2 | 0.75 | 1.328719 | 3.583343 | 4.430688 | 3.384015 |
0.3 | 0.5 | 1.628854 | 3.746986 | 4.534785 | 3.574155 |
0.4 | 0.375 | 1.881123 | 3.887829 | 4.623184 | 3.731486 |
0.5 | 0.3 | 2.098026 | 4.012896 | 4.700989 | 3.865063 |
0.6 | 0.25 | 2.287694 | 4.126279 | 4.771088 | 3.980639 |
0.7 | 0.2143 | 2.455731 | 4.230599 | 4.835292 | 4.082103 |
0.8 | 0.1875 | 2.606171 | 4.327642 | 4.89482 | 4.172209 |
0.9 | 0.1667 | 2.742017 | 4.418685 | 4.950534 | 4.252983 |
1 | 0.1500 | 2.865570 | 4.504674 | 5.003066 | 4.325962 |
[1] |
Yoshiaki Inoue, Tetsuya Takine. The FIFO single-server queue with disasters and multiple Markovian arrival streams. Journal of Industrial and Management Optimization, 2014, 10 (1) : 57-87. doi: 10.3934/jimo.2014.10.57 |
[2] |
Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067 |
[3] |
Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial and Management Optimization, 2010, 6 (4) : 929-944. doi: 10.3934/jimo.2010.6.929 |
[4] |
Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024 |
[5] |
Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial and Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058 |
[6] |
Jesus R. Artalejo, Tuan Phung-Duc. Markovian retrial queues with two way communication. Journal of Industrial and Management Optimization, 2012, 8 (4) : 781-806. doi: 10.3934/jimo.2012.8.781 |
[7] |
Tien-Yu Lin. Effect of warranty and quantity discounts on a deteriorating production system with a Markovian production process and allowable shortages. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1101-1118. doi: 10.3934/jimo.2020013 |
[8] |
Dequan Yue, Jun Yu, Wuyi Yue. A Markovian queue with two heterogeneous servers and multiple vacations. Journal of Industrial and Management Optimization, 2009, 5 (3) : 453-465. doi: 10.3934/jimo.2009.5.453 |
[9] |
Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077 |
[10] |
Veena Goswami, Pikkala Vijaya Laxmi. Analysis of renewal input bulk arrival queue with single working vacation and partial batch rejection. Journal of Industrial and Management Optimization, 2010, 6 (4) : 911-927. doi: 10.3934/jimo.2010.6.911 |
[11] |
Achyutha Krishnamoorthy, Anu Nuthan Joshua. A $ {BMAP/BMSP/1} $ queue with Markov dependent arrival and Markov dependent service batches. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2925-2941. doi: 10.3934/jimo.2020101 |
[12] |
Urmila Pyakurel, Tanka Nath Dhamala. Evacuation planning by earliest arrival contraflow. Journal of Industrial and Management Optimization, 2017, 13 (1) : 489-503. doi: 10.3934/jimo.2016028 |
[13] |
Dilip B. Madan. Measure distorted arrival rate risks and their rewards. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 8-. doi: 10.1186/s41546-017-0021-8 |
[14] |
V. S. Manoranjan, Hong-Ming Yin, R. Showalter. On two-phase Stefan problem arising from a microwave heating process. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1155-1168. doi: 10.3934/dcds.2006.15.1155 |
[15] |
Arnaud Devos, Joris Walraevens, Tuan Phung-Duc, Herwig Bruneel. Analysis of the queue lengths in a priority retrial queue with constant retrial policy. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2813-2842. doi: 10.3934/jimo.2019082 |
[16] |
Sung-Seok Ko. A nonhomogeneous quasi-birth-death process approach for an $ (s, S) $ policy for a perishable inventory system with retrial demands. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1415-1433. doi: 10.3934/jimo.2019009 |
[17] |
Jerim Kim, Bara Kim, Hwa-Sung Kim. G/M/1 type structure of a risk model with general claim sizes in a Markovian environment. Journal of Industrial and Management Optimization, 2012, 8 (4) : 909-924. doi: 10.3934/jimo.2012.8.909 |
[18] |
Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257 |
[19] |
Hanyu Gu, Hue Chi Lam, Yakov Zinder. Planning rolling stock maintenance: Optimization of train arrival dates at a maintenance center. Journal of Industrial and Management Optimization, 2022, 18 (2) : 747-772. doi: 10.3934/jimo.2020177 |
[20] |
Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial and Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]