November  2020, 16(6): 2913-2922. doi: 10.3934/jimo.2019086

A zero-forcing beamforming based time switching protocol for wireless powered internet of things system

1. 

College of Electrical and Information Technology, Sichuan University, Chengdu, China

2. 

Key Laboratory of Wireless Power Transmission of Ministry of Education, Sichuan University, Chengdu, China

* Corresponding author: Bin Li

Received  November 2018 Revised  March 2019 Published  July 2019

Fund Project: This work was supported by a grant from National Natural Science Foundation of China under number 61701124, a grant from Science and Technology on Space Intelligent Control Laboratory, No.KGJZDSYS-2018-03, a grant from Sichuan Province Government under No.2019YJ0105, and a grant from Fundamental Research Funds for the Central Universities(China)

In this paper, a time switching (TS) protocol for the wireless powered communications system with per-antenna power constraints is considered. To eliminate the multi-user interference, we adopt the zero-forcing beamforming scheme to maximize the sum rate performance. A two-step algorithm is proposed to solve the sum rate maximization problem with per-antenna power constraints. More specifically, golden section search method is used to find optimal time switching factor in the first step. For each given TS factor, the sub-problem in the second step is convex, which can be efficiently solved by standard software package. Numerical results are provided to demonstrate the effectiveness of the proposed methods, and some interesting results are also observed.

Citation: Hanyu Cao, Meiying Zhang, Huanxi Cai, Wei Gong, Min Su, Bin Li. A zero-forcing beamforming based time switching protocol for wireless powered internet of things system. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2913-2922. doi: 10.3934/jimo.2019086
References:
[1]

Internet of Things in 2020 - A Road Map in the Future, 2008. Available from: http://www.smart{_}systems{_}integration.org/public/documents/publications/Internet{_}of{_}Things{_}in{_}2020{_}EC-EPoSS{_}Workshop{_}Report{_}2008{_}v3.pdf. Google Scholar

[2]

G. Caire and S. Shamai, On the achievable throughput of multiantenna Gaussian broadcast channel, IEEE Trans. Inf. Theory, 49 (2003), 1691-1706.  doi: 10.1109/TIT.2003.813523.  Google Scholar

[3]

B. Clerckx and E. Bayguzina, Waveform design for wireless power transfer, IEEE Trans. Signal Process, 64 (2016), 6313-6328.  doi: 10.1109/TSP.2016.2601284.  Google Scholar

[4]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, A two-stage method for the design of near-field broadband beamformer, IEEE Transactions on Signal Processing, 59 (2011), 3647-3656.  doi: 10.1109/TSP.2011.2133490.  Google Scholar

[5]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, Placement design of microphone arrays in near-field broadband beamformers, IEEE Transactions on Signal Processing, 60 (2012), 1195-1204.  doi: 10.1109/TSP.2011.2178491.  Google Scholar

[6]

M. GrantS. BoydL. Liberti and N. Maculan, Disciplined convex programming in global optimization: From theory to implementation, Nonconvex Optimization and Its Applications, 84 (2006), 155-210.  doi: 10.1007/0-387-30528-9_7.  Google Scholar

[7]

B. LiH. H. DamA. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198.  doi: 10.3934/naco.2016012.  Google Scholar

[8]

B. LiH. H. DamA. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer design with signed power-of-two coefficients, Journal of Industrial and Management Optimization, 12 (2016), 595-607.  doi: 10.3934/jimo.2016.12.595.  Google Scholar

[9]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in nonregenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.  doi: 10.1109/TVT.2018.2846556.  Google Scholar

[10]

B. Li and Y. Rong, AF MIMO relay systems with wireless powered relay node and direct link, IEEE Transactions on Communications, 66 (2018), 1508-1519.  doi: 10.1109/TCOMM.2017.2788006.  Google Scholar

[11]

B. LiC. Z. WuH. H. DamA. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process, 63 (2015), 4179-4190.  doi: 10.1109/TSP.2015.2437846.  Google Scholar

[12]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless networks with RF energy harvesting: A contemporary survey, IEEE Communications Surveys & Tutorials, 17 (2015), 757–789. doi: 10.1109/COMST.2014.2368999.  Google Scholar

[13]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless charging technologies: fundamentals, standards, and network applications, IEEE Communications Surveys & Tutorials, 18 (2016), 1413–1452. doi: 10.1109/COMST.2015.2499783.  Google Scholar

[14]

L. Ma, Y. Wang and Y. Xu, Sum rate optimization for SWIPT system based on zero-forcing beamforming and time switching, 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), (2017), 351–356. doi: 10.1109/TSP.2015.2489603.  Google Scholar

[15]

A. A. Okandeji and et al., SWIPT in MISO full-duplex systems, Journal of Communications and Networks, 19 (2017), 470-480.  doi: 10.1109/JCN.2017.000079.  Google Scholar

[16]

C. Peng, Q. Shi, W. Xu and M. Hong, Energy efficiency optimization for multi-user MISO swipt systems, 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), (2015), 772–776. doi: 10.1109/TSP.2015.2489603.  Google Scholar

[17]

T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas and J. Li, Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges, IEEE Communications Surveys & Tutorials, 20 (2018), 264–302. doi: 10.1109/COMST.2017.2783901.  Google Scholar

[18]

Q. ShiL. LiuW. Xu and R. Zhang, Joint transmit beamforming and receive power splitting for MISO SWIPT systems, IEEE Transactions on Wireless Communications, 13 (2014), 3269-3280.  doi: 10.1109/TWC.2014.041714.131688.  Google Scholar

[19]

Q. ShiC. PengW. XuM. Hong and Y. Cai, Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming, IEEE Transactions on Signal Processing, 64 (2016), 842-854.  doi: 10.1109/TSP.2015.2489603.  Google Scholar

[20]

L. R. Varshney, Transporting information and energy simultaneously, IEEE Int. Symp. Inf. Theory (ISIT), 6 (2008), 1612-1616.  doi: 10.1109/ISIT.2008.4595260.  Google Scholar

[21]

A. WieselY. C. Eldar and S. Shamai, Zero-Forcing precoding and generalized inverses, IEEE Transactions on Signal Processing, 56 (2008), 4409-4418.  doi: 10.1109/TSP.2008.924638.  Google Scholar

[22]

R. Zhang, Cooperative multi-cell block diagonalization with per-base-station power constraints, IEEE Journal on Selected Areas in Communications, 28 (2010), 1435-1445.  doi: 10.1109/WCNC.2010.5506527.  Google Scholar

[23]

R. ZhangR. G. Maunder and L. Hanzo, Wireless information and power transfer: From scientific hypothesis to engineering practice, IEEE Communications Magazine, 53 (2015), 99-105.  doi: 10.1109/MCOM.2015.7180515.  Google Scholar

[24]

R. Zhang and C. K. Ho, MIMO broadcasting for simultaneous wireless information and power transfer, IEEE Trans. Wireless Commun., 12 (2013), 1989-2001.  doi: 10.1109/TWC.2013.031813.120224.  Google Scholar

[25]

Y. ZengB. Clerckx and and R. Zhang, Communications and signals design for wireless power transmission, IEEE Trans. Commun., 65 (2017), 2264-2290.  doi: 10.1109/TCOMM.2017.2676103.  Google Scholar

show all references

References:
[1]

Internet of Things in 2020 - A Road Map in the Future, 2008. Available from: http://www.smart{_}systems{_}integration.org/public/documents/publications/Internet{_}of{_}Things{_}in{_}2020{_}EC-EPoSS{_}Workshop{_}Report{_}2008{_}v3.pdf. Google Scholar

[2]

G. Caire and S. Shamai, On the achievable throughput of multiantenna Gaussian broadcast channel, IEEE Trans. Inf. Theory, 49 (2003), 1691-1706.  doi: 10.1109/TIT.2003.813523.  Google Scholar

[3]

B. Clerckx and E. Bayguzina, Waveform design for wireless power transfer, IEEE Trans. Signal Process, 64 (2016), 6313-6328.  doi: 10.1109/TSP.2016.2601284.  Google Scholar

[4]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, A two-stage method for the design of near-field broadband beamformer, IEEE Transactions on Signal Processing, 59 (2011), 3647-3656.  doi: 10.1109/TSP.2011.2133490.  Google Scholar

[5]

Z. G. FengK. F. C. Yiu and S. E. Nordholm, Placement design of microphone arrays in near-field broadband beamformers, IEEE Transactions on Signal Processing, 60 (2012), 1195-1204.  doi: 10.1109/TSP.2011.2178491.  Google Scholar

[6]

M. GrantS. BoydL. Liberti and N. Maculan, Disciplined convex programming in global optimization: From theory to implementation, Nonconvex Optimization and Its Applications, 84 (2006), 155-210.  doi: 10.1007/0-387-30528-9_7.  Google Scholar

[7]

B. LiH. H. DamA. Cantoni and K. L. Teo, A first-order optimal zero-forcing beamformer design for multiuser MIMO systems via a regularized dual accelerated gradient method, IEEE Commun. Lett., 19 (2015), 195-198.  doi: 10.3934/naco.2016012.  Google Scholar

[8]

B. LiH. H. DamA. Cantoni and K. L. Teo, A global optimal zero-forcing beamformer design with signed power-of-two coefficients, Journal of Industrial and Management Optimization, 12 (2016), 595-607.  doi: 10.3934/jimo.2016.12.595.  Google Scholar

[9]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in nonregenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.  doi: 10.1109/TVT.2018.2846556.  Google Scholar

[10]

B. Li and Y. Rong, AF MIMO relay systems with wireless powered relay node and direct link, IEEE Transactions on Communications, 66 (2018), 1508-1519.  doi: 10.1109/TCOMM.2017.2788006.  Google Scholar

[11]

B. LiC. Z. WuH. H. DamA. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Trans. Signal Process, 63 (2015), 4179-4190.  doi: 10.1109/TSP.2015.2437846.  Google Scholar

[12]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless networks with RF energy harvesting: A contemporary survey, IEEE Communications Surveys & Tutorials, 17 (2015), 757–789. doi: 10.1109/COMST.2014.2368999.  Google Scholar

[13]

X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, Wireless charging technologies: fundamentals, standards, and network applications, IEEE Communications Surveys & Tutorials, 18 (2016), 1413–1452. doi: 10.1109/COMST.2015.2499783.  Google Scholar

[14]

L. Ma, Y. Wang and Y. Xu, Sum rate optimization for SWIPT system based on zero-forcing beamforming and time switching, 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC), (2017), 351–356. doi: 10.1109/TSP.2015.2489603.  Google Scholar

[15]

A. A. Okandeji and et al., SWIPT in MISO full-duplex systems, Journal of Communications and Networks, 19 (2017), 470-480.  doi: 10.1109/JCN.2017.000079.  Google Scholar

[16]

C. Peng, Q. Shi, W. Xu and M. Hong, Energy efficiency optimization for multi-user MISO swipt systems, 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), (2015), 772–776. doi: 10.1109/TSP.2015.2489603.  Google Scholar

[17]

T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas and J. Li, Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges, IEEE Communications Surveys & Tutorials, 20 (2018), 264–302. doi: 10.1109/COMST.2017.2783901.  Google Scholar

[18]

Q. ShiL. LiuW. Xu and R. Zhang, Joint transmit beamforming and receive power splitting for MISO SWIPT systems, IEEE Transactions on Wireless Communications, 13 (2014), 3269-3280.  doi: 10.1109/TWC.2014.041714.131688.  Google Scholar

[19]

Q. ShiC. PengW. XuM. Hong and Y. Cai, Energy efficiency optimization for MISO SWIPT systems with zero-forcing beamforming, IEEE Transactions on Signal Processing, 64 (2016), 842-854.  doi: 10.1109/TSP.2015.2489603.  Google Scholar

[20]

L. R. Varshney, Transporting information and energy simultaneously, IEEE Int. Symp. Inf. Theory (ISIT), 6 (2008), 1612-1616.  doi: 10.1109/ISIT.2008.4595260.  Google Scholar

[21]

A. WieselY. C. Eldar and S. Shamai, Zero-Forcing precoding and generalized inverses, IEEE Transactions on Signal Processing, 56 (2008), 4409-4418.  doi: 10.1109/TSP.2008.924638.  Google Scholar

[22]

R. Zhang, Cooperative multi-cell block diagonalization with per-base-station power constraints, IEEE Journal on Selected Areas in Communications, 28 (2010), 1435-1445.  doi: 10.1109/WCNC.2010.5506527.  Google Scholar

[23]

R. ZhangR. G. Maunder and L. Hanzo, Wireless information and power transfer: From scientific hypothesis to engineering practice, IEEE Communications Magazine, 53 (2015), 99-105.  doi: 10.1109/MCOM.2015.7180515.  Google Scholar

[24]

R. Zhang and C. K. Ho, MIMO broadcasting for simultaneous wireless information and power transfer, IEEE Trans. Wireless Commun., 12 (2013), 1989-2001.  doi: 10.1109/TWC.2013.031813.120224.  Google Scholar

[25]

Y. ZengB. Clerckx and and R. Zhang, Communications and signals design for wireless power transmission, IEEE Trans. Commun., 65 (2017), 2264-2290.  doi: 10.1109/TCOMM.2017.2676103.  Google Scholar

Figure 1.  Sum Rate versus $ P $
Figure 2.  Sum Rate versus $ P $
Figure 3.  Sum Rate versus $ P $
[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[3]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[4]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[5]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[6]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[7]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[8]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[9]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[10]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[11]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[12]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[15]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[16]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[18]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[19]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[20]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (64)
  • HTML views (608)
  • Cited by (0)

[Back to Top]