Solution approach | EA | Modified GA | PBHA | GA-OP |
Makespan | 16 | 14 | 14 | 14 |
Mean CPU time (ms) | N/A | N/A | N/A | 191 |
1 N/A means the result was not given by the author. |
This paper considers the Flexible Job-shop Scheduling Problem with Operation and Processing flexibility (FJSP-OP) with the objective of minimizing the makespan. A Genetic Algorithm based approach is presented to solve the FJSP-OP. For the performance improvement, a new and concise Four-Tuple Scheme (FTS) is proposed for modeling a job with operation and processing flexibility. Then, with the FTS, an enhanced Genetic Algorithm employing a more efficient encoding strategy is developed. The use of this encoding strategy ensures that the classic genetic operators can be adopted to the utmost extent without generating infeasible offspring. Experiments have validated the proposed approach, and the results have shown the effectiveness and high performance of the proposed approach.
Citation: |
Table 1. Comparison of results for Experiment 1
Solution approach | EA | Modified GA | PBHA | GA-OP |
Makespan | 16 | 14 | 14 | 14 |
Mean CPU time (ms) | N/A | N/A | N/A | 191 |
1 N/A means the result was not given by the author. |
Table 2. Parameters and comparison of results on Experiment 3
Solution approach | ALO | Modified GA | GA-OP |
Parameters | N/A | $ PopSize=500 $ | $ PopSize=50 $ |
$ P_c=0.8,P_m=0.1,IterNo=100 $ | |||
Makespan | 161 | 162 | 145 |
Mean CPU time (ms) | N/A | N/A | 309 |
Table 3. Parameters and comparison of results on Experiment 4
Solution approach | ALGA | GA-OP |
Parameters | $ PopSize=400 $ | $ PopSize=200 $ |
$ P_c=0.8 $, $ P_m=0.1 $, $ IterNo=100 $ | ||
Makespan | 188 | 181 |
Mean CPU time (ms) | N/A | 2,907 |
Table 4. Comparison of results for Experiment 5
Problem | $ n \times m $ | TABC | HGTS | MA2 | HA | PSO | VNSGA | GA-OP |
mk01 | 10x6 | 40 | 40 | 40 | 40 | 41 | 40 | 40 |
mk02 | 10x6 | 26 | 26 | 26 | 26 | 26 | 26 | 26 |
mk03 | 15x8 | 204 | 204 | 204 | 204 | 207 | 204 | 204 |
mk04 | 15x8 | 60 | 60 | 60 | 60 | 65 | 60 | 60 |
mk05 | 15x4 | 173 | 172 | 172 | 172 | 171 | 173 | 172 |
mk06 | 10x15 | 60 | 57 | 59 | 57 | 61 | 58 | 57 |
mk07 | 20x5 | 139 | 139 | 139 | 139 | 173 | 144 | 139 |
mk08 | 20x10 | 523 | 523 | 523 | 523 | 523 | 523 | 523 |
mk09 | 20x10 | 307 | 307 | 307 | 307 | 307 | 307 | 307 |
mk10 | 20x15 | 202 | 198 | 202 | 197 | 312 | 198 | 198 |
Table 5. The experimental results (computational time in terms of seconds) of experiment 5
Problem | n x m | TABC | HGTS | MA2 | HA | PSO | VNSGA | GA-OP |
mk01 | 10x6 | 3.36 | 5 | 20.16 | 0.06 | N/A | N/A | 0.27 |
mk02 | 10x6 | 3.72 | 15 | 28.21 | 0.59 | N/A | N/A | 3.75 |
mk03 | 15x8 | 1.56 | 2 | 53.76 | 0.16 | N/A | N/A | 0.12 |
mk04 | 15x8 | 66.58 | 10 | 30.53 | 0.49 | N/A | N/A | 3.41 |
mk05 | 15x4 | 78.45 | 18 | 36.36 | 4.57 | N/A | N/A | 6.23 |
mk06 | 10x15 | 173.98 | 63 | 80.61 | 53.82 | N/A | N/A | 65.14 |
mk07 | 20x5 | 66.19 | 33 | 37.74 | 20.01 | N/A | N/A | 25.4 |
mk08 | 20x10 | 2.15 | 3 | 77.71 | 0.02 | N/A | N/A | 0.2 |
mk09 | 20x10 | 304.43 | 24 | 75.23 | 0.86 | N/A | N/A | 4.1 |
mk10 | 20x15 | 418.19 | 104 | 90.75 | 33.21 | N/A | N/A | 73.12 |
Table 6. Comparison of results on Experiment 6
Solution approach | Experiment 6(a) | Experiment 6(b) | ||
ACO | GA-OP | Enhanced ACO | GA-OP | |
Makespan | 589 | 522 | 484 | 482 |
Mean CPU time (ms) | 128,700 | 12,056 | 120534 | 12063 |
Table A1. Alternative machines of each operation performed for each job
Operation | Job | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
1 | 2, 4 | 2, 4 | 3, 5 | 3, 5 | 2, 4 | 2, 4 |
2 | 7, 8 | 7, 8 | 4, 6 | 4, 6 | 3, 5 | 3, 5 |
3 | 1, 2 | 1, 2 | 2, 3, 5 | 2, 3, 5 | 1, 2, 6 | 1, 2, 6 |
4 | 8, 6 | 8, 6 | 6, 7 | 6, 7 | 6, 8 | 6, 8 |
5 | 3, 5 | 3, 5 | 1, 8 | 1, 8 | 1, 7 | 1, 7 |
6 | 1, 2, 4 | 1, 2, 4 | 1, 4 | 1, 4 | 1, 3 | 1, 3 |
7 | 5, 6 | 5, 6 | 6, 7 | 6, 7 | 6, 7 | 6, 7 |
8 | 1, 7 | 1, 7 | 5, 8 | 5, 8 | 5, 8 | 5, 8 |
9 | 3, 8 | 3, 8 | 4, 2 | 4, 2 | 4, 3 | 4, 3 |
Table A2. Processing times on the alternative machines of each operation
Operation | Job | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
1 | 18, 22 | 18, 22 | 12, 15 | 12, 15 | 18, 22 | 18, 22 |
2 | 39, 36 | 39, 36 | 24, 23 | 24, 23 | 12, 15 | 12, 15 |
3 | 11, 10 | 37, 39 | 30, 31, 29 | 30, 31, 29 | 50, 52, 54 | 50, 52, 54 |
4 | 31, 34 | 20, 21 | 21, 22 | 21, 22 | 19, 21 | 53, 51 |
5 | 21, 23 | 21, 23 | 32, 30 | 32, 30 | 32, 31 | 22, 24 |
6 | 10, 12, 15 | 10, 12, 15 | 22, 25 | 22, 25 | 22, 25 | 22, 25 |
7 | 32, 30 | 36, 38 | 24, 22 | 42, 44 | 24, 22 | 24, 22 |
8 | 45, 44 | 45, 44 | 20, 19 | 41, 43 | 20, 18 | 20, 18 |
9 | 26, 24 | 26, 24 | 27, 22 | 27, 22 | 27, 22 | 27, 22 |
Table A3. Transportation times between the machines
Machine number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
1 | 0 | 3 | 7 | 10 | 3 | 5 | 8 | 12 |
2 | 3 | 0 | 4 | 7 | 5 | 3 | 5 | 8 |
3 | 7 | 4 | 0 | 3 | 8 | 5 | 3 | 5 |
4 | 10 | 7 | 3 | 0 | 10 | 8 | 5 | 3 |
5 | 3 | 5 | 8 | 10 | 0 | 3 | 7 | 10 |
6 | 5 | 3 | 5 | 8 | 3 | 0 | 4 | 7 |
7 | 8 | 5 | 3 | 5 | 7 | 4 | 0 | 3 |
8 | 12 | 8 | 5 | 3 | 10 | 7 | 3 | 0 |
[1] | A. Azzouz, M. Ennigrou and L. B. Said, A hybrid algorithm for flexible job-shop scheduling problem with setup times, Int. J. of Prod. Mgmt. & Eng., 5 (2017), 23-30. doi: 10.4995/ijpme.2017.6618. |
[2] | K. R. Baker, Introduction to Sequencing and Scheduling, Wiley, New York, 1974. |
[3] | W. Banzhaf, The "molecula" traveling salesman, Bio. Cyber., 64 (1990), 7-14. |
[4] | A. Baykasoglu, Linguistic-based meta-heuristic optimization model for flexible job shop scheduling, Int. J. of Prod. Research, 40 (2002), 4523-4543. doi: 10.1080/00207540210147043. |
[5] | A. Baykasoglu, L. Ozbakir and A. Sonmez, Using multiple objective tabu search and grammars to model and solve multi-objective flexible job shop scheduling problems, J. of Intell. Manufacturing, 15 (2004), 777-785. doi: 10.1023/B:JIMS.0000042663.16199.84. |
[6] | S. Benjaafar and R. S. Ramakrishnan, Modelling, measurement and evaluation of sequencing flexibility in manufacturing systems, Int. J. of Prod. Research, 34 (1996), 1195-1220. doi: 10.1080/00207549608904961. |
[7] | C. Bierwirth, D. C. Mattfeld and H. Kopfer, On permutation representations for scheduling problems, in International Conference on Parallel Problem Solving from Nature, Lecture Notes in Computer Science, 1141, Springer, Berlin, 1996,310–318. doi: 10.1007/3-540-61723-X_995. |
[8] | C. Bierwirth and D. Mattfeld, Production scheduling and rescheduling with genetic algorithms, Evol. Computation, 7 (1999), 1-17. doi: 10.1162/evco.1999.7.1.1. |
[9] | P. Brandimarte, Routing and scheduling in a flexible job shop by tabu search, Annals of Ops. Research, 41 (1993), 157-183. doi: 10.1007/BF02023073. |
[10] | I. A. Chaudhry and M. Usman, Integrated process planning and scheduling using genetic algorithms, Tehnicki Vjesnik, 24 (2017), 1401-1409. doi: 10.17559/TV-20151121212910. |
[11] | R. Cheng, M. Gen and Y. Tsujimura, A tutorial survey of job-shop scheduling problems using genetic algorithms-Ⅰ. Representation, Comp. & Indust. Engineering, 30 (1996), 983-997. doi: 10.1016/0360-8352(96)00047-2. |
[12] | R. Cheng, M. Gen and Y. Tsujimura, A tutorial survey of job-shop scheduling problems using genetic algorithms: Part Ⅱ. Hybrid genetic search strategies, Comp. & Indust. Engineering, 37 (1999), 51-55. doi: 10.1016/s0360-8352(99)00022-4. |
[13] | G. Chryssolouris, S. Chan and W. Cobb, Decision making on the factory floor: An integrated approach to process planning and scheduling, Robotics & Comp. Integ. Manufacturing, 1 (1984), 315-319. doi: 10.1016/0736-5845(84)90020-6. |
[14] | G. Chryssolouris, S. Chan and N. P. Suh, An integrated approach to process planning and scheduling, CIRP Annals - Manufacturing Tech., 34 (1985), 413-417. doi: 10.1016/S0007-8506(07)61801-0. |
[15] | D. A. Dabney, L. Green and V. Topalli, A priority-based heuristic algorithm (PBHA) for optimizing integrated process planning and scheduling problem, J. of Criminal Justice Edu., 2 (2015), 44-68. doi: 10.1080/23311916.2015.1070494. |
[16] | L. Davis, Job shop scheduling with genetic algorithms, In: International Conference on Genetic Algorithms, L. Erlbaum Asssociates Inc., Hillsdale, 1985, 136–140. |
[17] | H. H. Doh, J. M. Yu, J. S. Kim, D. H. Lee and S. H. Nam, A priority scheduling approach for flexible job shops with multiple process plans, Int. J. of Prod. Research, 51 (2013), 3748-3764. doi: 10.1080/00207543.2013.765074. |
[18] | D. B. Fogel, An evolutionary approach to the traveling salesman problem, Bio. Cybernetics, 60 (1988), 139-144. doi: 10.1007/BF00202901. |
[19] | J. Gao, M. Gen, L. Sun and X. Zhao, A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems, Comp. & Indust. Engineering, 53 (2007), 149-162. doi: 10.1016/j.cie.2007.04.010. |
[20] | K. Z. Gao, P. N. Suganthan, T. J. Chua, C. S. Chong, T. X. Cai and Q. K. Pan, A two-stage artificial bee colony algorithm scheduling flexible job-shop scheduling problem with new job insertion, Expert Syst. with Appl., 42 (2015), 7652-7663. doi: 10.1016/j.eswa.2015.06.004. |
[21] | M. Gen, Y. Tsujimura and E. Kubota, Solving job-shop scheduling problems by genetic algorithm, in IEEE International Conference on Systems, (1994), 576–579. doi: 10.1109/ICSMC.1994.400072. |
[22] | M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization, John Wiley & Sons, 2000. doi: 10.1002/9780470172261. |
[23] | D. E. Goldberg and R. Lingle, Alleles, loci and the traveling salesman problem, Proc. of 1st Int. Conf. on Genetic Algorithms and Their Applications, 12 (1985), 154-159. |
[24] | N. B. Ho, J. C. Tay and M. K. Lai, An effective architecture for learning and evolving flexible job-shop schedules, European J. of Oper. Research, 179 (2007), 316-333. doi: 10.1016/j.ejor.2006.04.007. |
[25] | Y. C. Ho and C. L. Moodie, Solving cell formation problems in a manufacturing environment with flexible processing and routing capabilities, Int. J. of Prod. Research, 34 (1996), 2901-2923. doi: 10.1080/00207549608905065. |
[26] | J. H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, Mich., 1975. |
[27] | K. Ida and K. Oka, Flexible job-shop scheduling problem by genetic algorithm, Electrical Engineering in Japan, 177 (2011), 28-35. doi: 10.1002/eej.21194. |
[28] | L. Jin, Q. Tang, C. Zhang, X. Shao and G. Tian, More MILP models for integrated process planning and scheduling, Int. J. of Prod. Research, 54 (2016), 4387-4402. doi: 10.1080/00207543.2016.1140917. |
[29] | B. Khoshnevis and Q. M. Chen, Integration of process planning and scheduling functions, J. of Intell. Manufacturing, 2 (1991), 165-175. doi: 10.1007/BF01471363. |
[30] | Y. K. Kim, J. Y. Kim and K. S. Shin, An asymmetric multileveled symbiotic evolutionary algorithm for integrated FMS scheduling, J. of Intell. Manufacturing, 18 (2007), 631-645. doi: 10.1007/s10845-007-0037-5. |
[31] | Y. K. Kim, K. Park and J. Ko, A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling, Comp. & Ops. Research, 30 (2003), 1151-1171. doi: 10.1016/S0305-0548(02)00063-1. |
[32] | T. Kis, Job-shop scheduling with processing alternatives, European J. of Oper. Research, 151 (2003), 307-332. doi: 10.1016/S0377-2217(02)00828-7. |
[33] | R. Kumar, M. K. Tiwari and R. Shankar, Scheduling of flexible manufacturing systems: An ant colony optimization approach, Proceedings of the Inst. of Mech. Engineers Part B: J. of Engineering Manufacture, 217 (2003), 1443-1453. doi: 10.1243/095440503322617216. |
[34] | A. Ławrynowicz, Integration of production planning and scheduling using an expert system and a genetic algorithm, J. of the Oper. Research Society, 59 (2008), 455-463. doi: 10.1057/palgrave.jors.2602423. |
[35] | H. Lee and S. S. Kim, Integration of process planning and scheduling using simulation based genetic algorithms, The Int. J. of Adv. Manufacturing Tech., 18 (2001), 586-590. doi: 10.1007/s001700170035. |
[36] | K. M. Lee, T. Yamakawa and K. M. Lee, A genetic algorithm for general machine scheduling problems, Int. J. of Knowledge-Based Intell. Electronic Systems, 2 (1998), 60-66. doi: 10.1109/KES.1998.725893. |
[37] | X. Y. Li and L. Gao, An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem, Int. J. of Prod. Economics, 174 (2016), 93-110. doi: 10.1016/j.ijpe.2016.01.016. |
[38] | X. Y. Li, L. Gao, X. Shao, C. Zhang and C. Wang, Mathematical modeling and evolutionary algorithm-based approach for integrated process planning and scheduling, Comp. & Ops. Research, 37 (2010), 656-667. doi: 10.1016/j.cor.2009.06.008. |
[39] | X. Y. Li, L. Gao and X. Y. Shao, An active learning genetic algorithm for integrated process planning and scheduling, Expert Syst. with Appl., 39 (2012), 6683-6691. doi: 10.1016/j.eswa.2011.11.074. |
[40] | X. Y. Li, X. Y. Shao, L. Gao and W. Qian, An effective hybrid algorithm for integrated process planning and scheduling, Int. J. of Prod. Economics, 126 (2010), 289-298. doi: 10.1016/j.ijpe.2010.04.001. |
[41] | X. Y. Li, C. Zhang, L. Gao, W. Li and X. Y. Shao, An agent-based approach for integrated process planning and scheduling, Expert Syst. with Appl., 37 (2010), 1256-1264. doi: 10.1016/j.eswa.2009.06.014. |
[42] | Y. J. Lin and J. J. Solberg, Effectiveness of flexible routing control, Int. J. of Flexible Manufacturing Syst., 3 (1991), 189-211. doi: 10.1007/BF00170206. |
[43] | M. Liu, S. Yi and P. Wen, Quantum-inspired hybrid algorithm for integrated process planning and scheduling, Proceedings of the Inst. of Mech. Engineers Part B: J. of Engineering Manufacture, 232 (2016), 1-18. doi: 10.1177/0954405416661006. |
[44] | G. Luo, X. Wen, H. Li, W. Ming and G. Xie, An effective multi-objective genetic algorithm based on immune principle and external archive for multi-objective integrated process planning and scheduling, Int. J. of Adv. Manufacturing Tech., 91 (2017), 3145-3158. doi: 10.1007/s00170-017-0020-z. |
[45] | V. K. Manupati, G. D. Putnik, M. K. Tiwari, P. Ávila and M. M. Cruz-Cunha, Integration of process planning and scheduling using mobile-agent based approach in a networked manufacturing environment, Comp. & Industrial Engineering, 94 (2016), 63-73. doi: 10.1016/j.cie.2016.01.017. |
[46] | Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Second edition, Springer-Verlag, Berlin, 1994. doi: 10.1007/978-3-662-02830-8. |
[47] | C. Moon, Y. H. Lee, C. S. Jeong and Y. S. Yun, Integrated process planning and scheduling in a supply chain, Comp. & Indust. Engineering, 54 (2008), 1048-1061. doi: 10.1016/j.cie.2007.06.018. |
[48] | N. Morad and A. Zalzala, Genetic algorithms in integrated process planning and scheduling, J. of Intell. Manufacturing, 10 (1999), 169-179. doi: 10.1023/a:1008976720878. |
[49] | H. E. Nouri, O. B. Driss and K. Ghédira, Solving the flexible job shop problem by hybrid metaheuristics-based multiagent model, J. of Indust. Engineering Int., 14 (2018), 1-14. doi: 10.1007/s40092-017-0204-z. |
[50] | M. Nouiri, A. Bekrar, A. Jemai, S. Niar and A. C. Ammari, An effective and distributed particle swarm optimization algorithm for flexible job-shop scheduling problem, J. of Intell. Manufacturing, 29 (2018), 603-615. doi: 10.1007/s10845-015-1039-3. |
[51] | C. Özgüven, L. Özbakır and Y. Yavuz, Mathematical models for job-shop scheduling problems with routing and process plan flexibility, Appl. Math. Modelling, 34 (2010), 1539-1548. doi: 10.1016/j.apm.2009.09.002. |
[52] | J. J. Palacios, M. A. González, C. R. Vela, I. González-Rodríguez and J. Puente, Genetic tabu search for the fuzzy flexible job shop problem, Comp. & Ops. Research, 54 (2015), 74-89. doi: 10.1016/j.cor.2014.08.023. |
[53] | M. Petroviä, J. Petronijeviä, M. Mitiä, N. Vukoviä, Z. Miljkoviä and B. Babiä, The ant lion optimization algorithm for integrated process planning and scheduling, Appl. Mechanics & Materials, 834 (2016), 187-192. |
[54] | R. K. Phanden, A. Jain and R. Verma, Integration of process planning and scheduling: A state-of-the-art review, Int. J. of Comp. Integrated Manufacturing, 24 (2011), 517-534. doi: 10.1080/0951192X.2011.562543. |
[55] | L. Qiao and S. Lv, An improved genetic algorithm for integrated process planning and scheduling, The Int. J. of Adv. Manufacturing Tech., 58 (2012), 727-740. doi: 10.1007/s00170-011-3409-0. |
[56] | A. Rajabinasab and S. Mansour, Dynamic flexible job shop scheduling with alternative process plans: An agent-based approach, The Int. J. of Adv. Manufacturing Tech., 54 (2011), 1091-1107. doi: 10.1007/s00170-010-2986-7. |
[57] | C. Saygin and S. E. Kilic, Integrating flexible process plans with scheduling in flexible manufacturing systems, The Int. J. of Adv. Manufacturing Tech., 15 (1999), 268-280. doi: 10.1007/s001700050066. |
[58] | X. Y. Shao, X. Y. Li, L. Gao and C. Y. Zhang, Integration of process planning and scheduling-a modified genetic algorithm-based approach, Comp. & Ops. Research, 36 (2009), 2082-2096. doi: 10.1016/j.cor.2008.07.006. |
[59] | O. Sobeyko and L. Mã¶Nch, Integrated process planning and scheduling for large-scale flexible job shops using metaheuristics, Int. J. of Prod. Research, 55 (2017), 392-409. doi: 10.1080/00207543.2016.1182227. |
[60] | D. Sreeramulu, Y. Sagar, P. Suman and A. S. Kumar, Integration of process planning and scheduling of a manufacturing systems using petri nets and genetic algorithm, Indian J. of Science & Tech., 9 (2016), 2-8. doi: 10.17485/ijst/2016/v9i41/100874. |
[61] | G. Syswerda, Uniform Crossover in Genetic Algorithms, International Conference on Genetic Algorithms, (1989), 2–9. |
[62] | Z. Wang and T. Ju, The research about integration of process planning and production scheduling based on genetic algorithm, International Conference on Computer Science and Software Engineering, (2008), 9–12. doi: 10.1109/CSSE.2008.845. |
[63] | T. N. Wong, C. W. Leung, K. L. Mak and R. Y. K. Fung, An agent-based negotiation approach to integrate process planning and scheduling, Int. J. of Prod. Research, 44 (2006), 1331-1351. doi: 10.1080/00207540500409723. |
[64] | T. N. Wong, C. W. Leung, K. L. Mak and R. Y. K. Fung, Integrated process planning and scheduling/rescheduling-an agent-based approach, Int. J. of Prod. Research, 44 (2006), 3627-3655. doi: 10.1080/00207540600675801. |
[65] | T. N. Wong, S. C. Zhang, G. Wang and L. P. Zhang, Integrated process planning and scheduling – multi-agent system with two-stage ant colony optimisation algorithm, Int. J. of Prod. Research, 50 (2012), 6188-6201. doi: 10.1080/00207543.2012.720393. |
[66] | H. Xia, X. Li and L. Gao, A hybrid genetic algorithm with variable neighborhood search for dynamic integrated process planning and scheduling, Comp. & Indust. Engineering, 102 (2016), 99-112. doi: 10.1016/j.cie.2016.10.015. |
[67] | L. Yin, L. Gao, X. Li and H. Xia, An improved genetic algorithm with rolling window technology for dynamic integrated process planning and scheduling problem, IEEE International Conference on Computer Supported Cooperative Work in Design, (2017), 414–419. doi: 10.1109/CSCWD.2017.8066730. |
[68] | Y. Yuan and H. Xu, Multiobjective flexible job shop scheduling using memetic algorithms, IEEE Transactions on Automation Science and Engineering, 12 (2015), 336-353. doi: 10.1109/TASE.2013.2274517. |
[69] | G. Zhang, L. Zhang, X. Song, Y. Wang and C. Zhou, A variable neighborhood search based genetic algorithm for flexible job shop scheduling problem, Cluster Computing, (2018), 1–12. doi: 10.1007/s10586-017-1420-4. |
[70] | S. Zhang and T. N. Wong, Integrated process planning and scheduling: An enhanced ant colony optimization heuristic with parameter tuning, J. of Intell. Manufacturing, 29 (2018), 585-601. doi: 10.1007/s10845-014-1023-3. |
[71] | L. Zhang and T. N. Wong, An object-coding genetic algorithm for integrated process planning and scheduling, European J. of Oper. Research, 244 (2015), 434-444. doi: 10.1016/j.ejor.2015.01.032. |
[72] | S. Zhang, Z. Yu, W. Zhang, D. Yu and Y. Xu, An extended genetic algorithm for distributed integration of fuzzy process planning and scheduling, Math. Problems in Engineering, 3 (2016), 1-13. doi: 10.1155/2016/3763512. |
Alternative process plans networks
An illustrative chromosome applying the hierarchical encoding approach
Illustrative chromosomes applying the integrated encoding approach
Algorithm GENERATE-PROCESS-PLAN
A chromosome of the FJSP-OP
Algorithm GENERATE-SCHEDULING
Decoding a chromosome
Crossover operations
Mutation operations
The Gantt chart of Experiment 1
The Gantt chart of Experiment 3
The Gantt chart of Experiment 4
The Gantt chart of problem mk06 in Experiment 5
The Gantt chart of Experiment 6(b)
Performance curve of Experiment 4
The data of Experiment 3