-
Previous Article
Optimal reinsurance-investment problem with dependent risks based on Legendre transform
- JIMO Home
- This Issue
-
Next Article
Risk-balanced territory design optimization for a Micro finance institution
Optimality conditions for $ E $-differentiable vector optimization problems with the multiple interval-valued objective function
1. | Faculty of Mathematics and Computer Science University of Łódź, Banacha 22, 90-238 Łódź, Poland |
2. | Department of Mathematics, Hadhramout University, P.O. BOX : (50511-50512), Al-Mahrah, Yemen |
In this paper, a nonconvex vector optimization problem with multiple interval-valued objective function and both inequality and equality constraints is considered. The functions constituting it are not necessarily differentiable, but they are $ E $-differentiable. The so-called $ E $-Karush-Kuhn-Tucker necessary optimality conditions are established for the considered $ E $-differentiable vector optimization problem with the multiple interval-valued objective function. Also the sufficient optimality conditions are derived for such interval-valued vector optimization problems under appropriate (generalized) $ E $-convexity hypotheses.
References:
[1] |
I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. of Inequalities and Applications, 313 (2013), 14pp.
doi: 10.1186/1029-242X-2013-313. |
[2] |
I. Ahmad, D. Singh and B. A. Dar,
Optimality conditions for invex interval valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.
doi: 10.2298/FIL1608121A. |
[3] |
G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, NY, 1983. |
[4] |
A. K. Bhurjee and G. Panda,
Efficient solution of interval optimization problem, Math. Methods of Oper. Research, 76 (2012), 273-288.
doi: 10.1007/s00186-012-0399-0. |
[5] |
S. Chanas and D. Kuchta,
Multiobjective programming in optimization of interval objective functions – a generalized approach, European J. of Oper. Research, 94 (1996), 594-598.
doi: 10.1016/0377-2217(95)00055-0. |
[6] |
X. Chen,
Some properties of semi-E-convex functions, J. of Math. Anal. and Applications, 275 (2002), 251-262.
doi: 10.1016/S0022-247X(02)00325-6. |
[7] |
X. Chen and Z. Li,
On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity, J. of Indust. and Mgmt. Optimization, 14 (2018), 895-912.
doi: 10.3934/jimo.2017081. |
[8] |
D. I. Duca, E. Duca, L. Lupsa and R. Blaga, E-convex functions, Bulletin of Appl. Computational Math., 43 (2000), 93-103. Google Scholar |
[9] |
D. I. Duca and L. Lupsa,
On the E-epigraph of an E-convex function, J. of Optimization Theory and Appl., 129 (2006), 341-348.
doi: 10.1007/s10957-006-9059-y. |
[10] |
T. Emam and E. A. Youness,
Semi strongly E-convex function, J. of Math. and Statistics, 1 (2005), 51-57.
doi: 10.3844/jmssp.2005.51.57. |
[11] |
C. Fulga and V. Preda,
Nonlinear programming with E-preinvex and local E-preinvex functions, European J. of Oper. Research, 192 (2009), 737-743.
doi: 10.1016/j.ejor.2007.11.056. |
[12] |
J. S. Grace and P. Thangavelu,
Properties of E-convex sets, Tamsui Oxford J. of Math. Sciences, 25 (2009), 1-7.
|
[13] |
E. Hosseinzade and H. Hassanpour,
The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems, J. of Appl. Math. & Informatics, 29 (2011), 1157-1165.
|
[14] |
M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Research, 14 (2014), 71-85. Google Scholar |
[15] |
A. Jayswal, I. Stancu-Minasian and I. Ahmad,
On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. and Computation, 218 (2011), 4119-4127.
doi: 10.1016/j.amc.2011.09.041. |
[16] |
S. Karmakar and A. K. Bhunia,
An alternative optimization technique for interval objective constrained optimization problems via multiobjective programming, J. of the Egyptian Math. Society, 22 (2014), 292-303.
doi: 10.1016/j.joems.2013.07.002. |
[17] |
L. Li, S. Liu and J. Zhang, Univex interval-valued mapping with differentiability and its application in nonlinear programming, J. of Appl. Math., 2013 (2013), 8pp.
doi: 10.1155/2013/383692. |
[18] |
L. Li, S. Liu and J. Zhang, On interval-valued invex mappings and optimality conditions for interval-valued optimization problems, J. of Ineq. and Appl., 2015 (2015), 19pp.
doi: 10.1186/s13660-015-0692-6. |
[19] |
L. Lupsa and D. I. Duca,
E-convex programming, Revue d'Analyse Numerique et de Theorie de l'Approximation, 33 (2004), 183-187.
|
[20] |
O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969. |
[21] |
A. E.-M. A. Megahed, H. G. Gomma, E. A. Youness and A.-Z. H. El-Banna, Optimality conditions of E-convex programming for an E-differentiable function, J. of Ineq. and Appl., 2013 (2013), 11pp.
doi: 10.1186/1029-242X-2013-246. |
[22] |
F. Mirzapour, Some properties on E-convex and E-quasi-convex functions, in The 18th Seminar on Mathematical Analysis and its Applications, 26-27 Farvardin, 1388, Tarbiat Moallem University, 2009, 178–181. Google Scholar |
[23] |
R. E. Moore, Method and Applications of Interval Analysis, SIAM, Philadelphia, 1979. |
[24] |
G.-R. Piao, L. Jiao and D. S. Kim, Optimality and mixed duality in multiobjective E-convex programming, J. of Ineq. and Appl., 2015 (2015), 13pp.
doi: 10.1186/s13660-015-0854-6. |
[25] |
D. Singh, B. A. Dar and A. Goyal,
KKT optimality conditions for interval valued optimization problems, J. of Nonlinear Anal. and Optimization, 5 (2014), 91-103.
|
[26] |
D. Singh, B. A. Dar and D. S. Kim,
KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions, European J. of Oper. Research, 254 (2016), 29-39.
doi: 10.1016/j.ejor.2016.03.042. |
[27] |
M. Soleimani-Damaneh,
E-convexity and its generalizations, Int. J. of Computer Math., 88 (2011), 3335-3349.
doi: 10.1080/00207160.2011.589899. |
[28] |
Y.-R. Syau and E. S. Lee,
Some properties of E-convex functions, Appl. Mathematics Letters, 18 (2005), 1074-1080.
doi: 10.1016/j.aml.2004.09.018. |
[29] |
H.-C. Wu,
On interval-valued nonlinear programming problems, J. of Math. Anal. and Applications, 338 (2008), 299-316.
doi: 10.1016/j.jmaa.2007.05.023. |
[30] |
H.-C. Wu,
The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions, European J. of Oper. Research, 196 (2009), 49-60.
doi: 10.1016/j.ejor.2008.03.012. |
[31] |
X. M. Yang,
On E-convex sets, E-convex functions, and E-convex programing, J. of Optimization Theory and Applications, 109 (2001), 699-704.
doi: 10.1023/A:1017532225395. |
[32] |
E. A. Youness,
E-convex sets, E-convex functions, and E-convex programming, J. of Optimization Theory and Applications, 102 (1999), 439-450.
doi: 10.1023/A:1021792726715. |
[33] |
E. A. Youness,
Optimality criteria in E-convex programming, Chaos, Solitons & Fractals, 12 (2001), 1737-1745.
doi: 10.1016/S0960-0779(00)00036-9. |
[34] |
E. A. Youness,
Characterization of efficient solution of multiobjective E-convex programming problems, Appl. Math. and Computation, 151 (2004), 755-761.
doi: 10.1016/S0096-3003(03)00526-5. |
[35] |
J. K. Zhang, S. Y. Liu, L. F. Li and Q. X. Feng,
The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optimization Letters, 8 (2014), 607-631.
doi: 10.1007/s11590-012-0601-6. |
[36] |
H.-C. Zhou and Y.-J. Wang, Optimality condition and mixed duality for interval-valued optimization, in Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing, 62, Springer, 2009, 1315–1323.
doi: 10.1007/978-3-642-03664-4_140. |
show all references
References:
[1] |
I. Ahmad, A. Jayswal and J. Banerjee, On interval-valued optimization problems with generalized invex functions, J. of Inequalities and Applications, 313 (2013), 14pp.
doi: 10.1186/1029-242X-2013-313. |
[2] |
I. Ahmad, D. Singh and B. A. Dar,
Optimality conditions for invex interval valued nonlinear programming problems involving generalized H-derivative, Filomat, 30 (2016), 2121-2138.
doi: 10.2298/FIL1608121A. |
[3] |
G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press, NY, 1983. |
[4] |
A. K. Bhurjee and G. Panda,
Efficient solution of interval optimization problem, Math. Methods of Oper. Research, 76 (2012), 273-288.
doi: 10.1007/s00186-012-0399-0. |
[5] |
S. Chanas and D. Kuchta,
Multiobjective programming in optimization of interval objective functions – a generalized approach, European J. of Oper. Research, 94 (1996), 594-598.
doi: 10.1016/0377-2217(95)00055-0. |
[6] |
X. Chen,
Some properties of semi-E-convex functions, J. of Math. Anal. and Applications, 275 (2002), 251-262.
doi: 10.1016/S0022-247X(02)00325-6. |
[7] |
X. Chen and Z. Li,
On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity, J. of Indust. and Mgmt. Optimization, 14 (2018), 895-912.
doi: 10.3934/jimo.2017081. |
[8] |
D. I. Duca, E. Duca, L. Lupsa and R. Blaga, E-convex functions, Bulletin of Appl. Computational Math., 43 (2000), 93-103. Google Scholar |
[9] |
D. I. Duca and L. Lupsa,
On the E-epigraph of an E-convex function, J. of Optimization Theory and Appl., 129 (2006), 341-348.
doi: 10.1007/s10957-006-9059-y. |
[10] |
T. Emam and E. A. Youness,
Semi strongly E-convex function, J. of Math. and Statistics, 1 (2005), 51-57.
doi: 10.3844/jmssp.2005.51.57. |
[11] |
C. Fulga and V. Preda,
Nonlinear programming with E-preinvex and local E-preinvex functions, European J. of Oper. Research, 192 (2009), 737-743.
doi: 10.1016/j.ejor.2007.11.056. |
[12] |
J. S. Grace and P. Thangavelu,
Properties of E-convex sets, Tamsui Oxford J. of Math. Sciences, 25 (2009), 1-7.
|
[13] |
E. Hosseinzade and H. Hassanpour,
The Karush-Kuhn-Tucker optimality conditions in interval-valued multiobjective programming problems, J. of Appl. Math. & Informatics, 29 (2011), 1157-1165.
|
[14] |
M. Jana and G. Panda, Solution of nonlinear interval vector optimization problem, Oper. Research, 14 (2014), 71-85. Google Scholar |
[15] |
A. Jayswal, I. Stancu-Minasian and I. Ahmad,
On sufficiency and duality for a class of interval-valued programming problems, Appl. Math. and Computation, 218 (2011), 4119-4127.
doi: 10.1016/j.amc.2011.09.041. |
[16] |
S. Karmakar and A. K. Bhunia,
An alternative optimization technique for interval objective constrained optimization problems via multiobjective programming, J. of the Egyptian Math. Society, 22 (2014), 292-303.
doi: 10.1016/j.joems.2013.07.002. |
[17] |
L. Li, S. Liu and J. Zhang, Univex interval-valued mapping with differentiability and its application in nonlinear programming, J. of Appl. Math., 2013 (2013), 8pp.
doi: 10.1155/2013/383692. |
[18] |
L. Li, S. Liu and J. Zhang, On interval-valued invex mappings and optimality conditions for interval-valued optimization problems, J. of Ineq. and Appl., 2015 (2015), 19pp.
doi: 10.1186/s13660-015-0692-6. |
[19] |
L. Lupsa and D. I. Duca,
E-convex programming, Revue d'Analyse Numerique et de Theorie de l'Approximation, 33 (2004), 183-187.
|
[20] |
O. L. Mangasarian, Nonlinear Programming, McGraw-Hill, New York, 1969. |
[21] |
A. E.-M. A. Megahed, H. G. Gomma, E. A. Youness and A.-Z. H. El-Banna, Optimality conditions of E-convex programming for an E-differentiable function, J. of Ineq. and Appl., 2013 (2013), 11pp.
doi: 10.1186/1029-242X-2013-246. |
[22] |
F. Mirzapour, Some properties on E-convex and E-quasi-convex functions, in The 18th Seminar on Mathematical Analysis and its Applications, 26-27 Farvardin, 1388, Tarbiat Moallem University, 2009, 178–181. Google Scholar |
[23] |
R. E. Moore, Method and Applications of Interval Analysis, SIAM, Philadelphia, 1979. |
[24] |
G.-R. Piao, L. Jiao and D. S. Kim, Optimality and mixed duality in multiobjective E-convex programming, J. of Ineq. and Appl., 2015 (2015), 13pp.
doi: 10.1186/s13660-015-0854-6. |
[25] |
D. Singh, B. A. Dar and A. Goyal,
KKT optimality conditions for interval valued optimization problems, J. of Nonlinear Anal. and Optimization, 5 (2014), 91-103.
|
[26] |
D. Singh, B. A. Dar and D. S. Kim,
KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions, European J. of Oper. Research, 254 (2016), 29-39.
doi: 10.1016/j.ejor.2016.03.042. |
[27] |
M. Soleimani-Damaneh,
E-convexity and its generalizations, Int. J. of Computer Math., 88 (2011), 3335-3349.
doi: 10.1080/00207160.2011.589899. |
[28] |
Y.-R. Syau and E. S. Lee,
Some properties of E-convex functions, Appl. Mathematics Letters, 18 (2005), 1074-1080.
doi: 10.1016/j.aml.2004.09.018. |
[29] |
H.-C. Wu,
On interval-valued nonlinear programming problems, J. of Math. Anal. and Applications, 338 (2008), 299-316.
doi: 10.1016/j.jmaa.2007.05.023. |
[30] |
H.-C. Wu,
The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions, European J. of Oper. Research, 196 (2009), 49-60.
doi: 10.1016/j.ejor.2008.03.012. |
[31] |
X. M. Yang,
On E-convex sets, E-convex functions, and E-convex programing, J. of Optimization Theory and Applications, 109 (2001), 699-704.
doi: 10.1023/A:1017532225395. |
[32] |
E. A. Youness,
E-convex sets, E-convex functions, and E-convex programming, J. of Optimization Theory and Applications, 102 (1999), 439-450.
doi: 10.1023/A:1021792726715. |
[33] |
E. A. Youness,
Optimality criteria in E-convex programming, Chaos, Solitons & Fractals, 12 (2001), 1737-1745.
doi: 10.1016/S0960-0779(00)00036-9. |
[34] |
E. A. Youness,
Characterization of efficient solution of multiobjective E-convex programming problems, Appl. Math. and Computation, 151 (2004), 755-761.
doi: 10.1016/S0096-3003(03)00526-5. |
[35] |
J. K. Zhang, S. Y. Liu, L. F. Li and Q. X. Feng,
The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function, Optimization Letters, 8 (2014), 607-631.
doi: 10.1007/s11590-012-0601-6. |
[36] |
H.-C. Zhou and Y.-J. Wang, Optimality condition and mixed duality for interval-valued optimization, in Fuzzy Information and Engineering, Vol. 2, Advances in Intelligent and Soft Computing, 62, Springer, 2009, 1315–1323.
doi: 10.1007/978-3-642-03664-4_140. |
[1] |
Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010 |
[2] |
Xiuhong Chen, Zhihua Li. On optimality conditions and duality for non-differentiable interval-valued programming problems with the generalized (F, ρ)-convexity. Journal of Industrial & Management Optimization, 2018, 14 (3) : 895-912. doi: 10.3934/jimo.2017081 |
[3] |
Kequan Zhao, Xinmin Yang. Characterizations of the $E$-Benson proper efficiency in vector optimization problems. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 643-653. doi: 10.3934/naco.2013.3.643 |
[4] |
Zhiang Zhou, Xinmin Yang, Kequan Zhao. $E$-super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1031-1039. doi: 10.3934/jimo.2016.12.1031 |
[5] |
Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2267-2278. doi: 10.3934/dcdsb.2014.19.2267 |
[6] |
Lijia Yan. Some properties of a class of $(F,E)$-$G$ generalized convex functions. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 615-625. doi: 10.3934/naco.2013.3.615 |
[7] |
Alfonso Castro, Guillermo Reyes. Existence of multiple solutions for a semilinear problem and a counterexample by E. N. Dancer. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1135-1146. doi: 10.3934/cpaa.2017055 |
[8] |
Yuhua Sun, Laisheng Wang. Optimality conditions and duality in nondifferentiable interval-valued programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 131-142. doi: 10.3934/jimo.2013.9.131 |
[9] |
Baoxiang Wang. E-Besov spaces and dissipative equations. Communications on Pure & Applied Analysis, 2004, 3 (4) : 883-919. doi: 10.3934/cpaa.2004.3.883 |
[10] |
Tao Chen, Yunping Jiang, Gaofei Zhang. No invariant line fields on escaping sets of the family $\lambda e^{iz}+\gamma e^{-iz}$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1883-1890. doi: 10.3934/dcds.2013.33.1883 |
[11] |
Zutong Wang, Jiansheng Guo, Mingfa Zheng, Youshe Yang. A new approach for uncertain multiobjective programming problem based on $\mathcal{P}_{E}$ principle. Journal of Industrial & Management Optimization, 2015, 11 (1) : 13-26. doi: 10.3934/jimo.2015.11.13 |
[12] |
Florian Schneider. Second-order mixed-moment model with differentiable ansatz function in slab geometry. Kinetic & Related Models, 2018, 11 (5) : 1255-1276. doi: 10.3934/krm.2018049 |
[13] |
Augusto Visintin. P.D.E.s with hysteresis 30 years later. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 793-816. doi: 10.3934/dcdss.2015.8.793 |
[14] |
Alejandro Cataldo, Juan-Carlos Ferrer, Pablo A. Rey, Antoine Sauré. Design of a single window system for e-government services: the chilean case. Journal of Industrial & Management Optimization, 2018, 14 (2) : 561-582. doi: 10.3934/jimo.2017060 |
[15] |
M. Guru Prem Prasad, Tarakanta Nayak. Dynamics of { $\lambda tanh(e^z): \lambda \in R$\ ${ 0 }$ }. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 121-138. doi: 10.3934/dcds.2007.19.121 |
[16] |
Vladimir V. Marchenko, Klavdii V. Maslov, Dmitry Shepelsky, V. V. Zhikov. E.Ya.Khruslov. On the occasion of his 70th birthday. Networks & Heterogeneous Media, 2008, 3 (3) : 647-650. doi: 10.3934/nhm.2008.3.647 |
[17] |
Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046 |
[18] |
Fei Gao. Data encryption algorithm for e-commerce platform based on blockchain technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1457-1470. doi: 10.3934/dcdss.2019100 |
[19] |
Caili Sang, Zhen Chen. $ E $-eigenvalue localization sets for tensors. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019042 |
[20] |
Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022 |
2018 Impact Factor: 1.025
Tools
Metrics
Other articles
by authors
[Back to Top]