# American Institute of Mathematical Sciences

• Previous Article
Numerical solution to an inverse problem on a determination of places and capacities of sources in the hyperbolic systems
• JIMO Home
• This Issue
• Next Article
Optimality conditions for $E$-differentiable vector optimization problems with the multiple interval-valued objective function
November  2020, 16(6): 2991-3009. doi: 10.3934/jimo.2019090

## Pairs trading with illiquidity and position limits

 1 Societe Generale Hong Kong, Three Pacific Place, 1 Queen's Road East, Hong Kong 2 Department of Mathematics and Information Technology, Education University of Hong Kong, Hong Kong SAR, China 3 Department of Statistics, The Chinese University of Hong Kong, Hong Kong SAR, China

*Corresponding author

Received  August 2018 Revised  February 2019 Published  July 2019

We investigate the optimal investment among the money market account, a liquid risky asset (e.g. stock index) and an illiquid risky asset (e.g. individual stock), where the two risky assets are cointegrated. The illiquid risky asset is subject to a proportional transaction cost and the portfolio of the three assets faces certain position limits. We develop the optimal investment strategy to maximize the gain function, which is realized through an expected sum of discounted utilities given transaction costs and position limits. The problem formulation uses a singular control framework with cointegration that determines optimal trading boundaries among holding, selling and no-trading regions. We conduct comprehensive numerical analysis on the optimal investment strategy and features of the optimal trading boundaries given various levels of position limits.

Citation: Menglu Feng, Mei Choi Chiu, Hoi Ying Wong. Pairs trading with illiquidity and position limits. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2991-3009. doi: 10.3934/jimo.2019090
##### References:

show all references

##### References:
Optimal investment boundaries for the illiquid asset without position limits. Parameter values: $\beta_1 = 0.1$, $\beta_2 = 0.15$, $\sigma_1 = 0.2$, $\sigma_2 = 0.25$, $\delta_1 = 1$, $\delta_2 = 0.4$, $\lambda = 1$, $\rho = 0.8$, $\alpha = 0.01$, $\theta = 0.01$, $\gamma = 0.5$, $r = 0.01$, $\nu = 0.02$
Optimal investment boundaries for the illiquid asset with position limits. Parameter values: $\beta_1 = 0.1$, $\beta_2 = 0.15$, $\sigma_1 = 0.2$, $\sigma_2 = 0.25$, $\delta_1 = 1$, $\delta_2 = 0.4$, $\lambda = 1$, $\rho = 0.8$, $\alpha = 0.01$, $\theta = 0.01$, $\gamma = 0.5$, $r = 0.01$, $\nu = 0.02$, $\underset{\bar{}}{l} = -0.5$, $\bar{l} = 0.7$
Optimal investment boundaries for the illiquid asset at $x = 15$. Parameter values: $\beta_1 = 0.1$, $\beta_2 = 0.15$, $\sigma_1 = 0.2$, $\sigma_2 = 0.25$, $\delta_1 = 1$, $\delta_2 = 0.4$, $\lambda = 1$, $\rho = 0.8$, $\alpha = 0.01$, $\theta = 0.01$, $\gamma = 0.5$, $r = 0.01$, $\nu = 0.02$, $\underset{\bar{}}{l} = -0.5$, $\bar{l} = 0.7$
Optimal investment boundaries for the illiquid asset at $x = 15$ with various transaction cost rates $\alpha$. Parameter values: $\beta_1 = 0.1$, $\beta_2 = 0.15$, $\sigma_1 = 0.2$, $\sigma_2 = 0.25$, $\delta_1 = 1$, $\delta_2 = 0.4$, $\lambda = 1$, $\rho = 0.8$, $\gamma = 0.5$, $r = 0.01$, $\nu = 0.02$
Optimal investment boundaries for the illiquid asset at $x = 15$ with various correlation coefficients $\rho$. Parameter values: $\beta_1 = 0.1$, $\beta_2 = 0.15$, $\sigma_1 = 0.2$, $\sigma_2 = 0.25$, $\delta_1 = 1$, $\delta_2 = 0.4$, $\lambda = 1$, $\alpha = 0.01$, $\theta = 0.01$, $\gamma = 0.5$, $r = 0.01$, $\nu = 0.02$
Optimal investment boundaries for creating positions with the illiquid asset at $x = 15$ with various lower bound $\underset{\bar{}}{l}$. Parameter values: $\beta_1 = 0.1$, $\beta_2 = 0.15$, $\sigma_1 = 0.2$, $\sigma_2 = 0.25$, $\delta_1 = 1$, $\delta_2 = 0.4$, $\lambda = 1$, $\alpha = 0.01$, $\theta = 0.01$, $\gamma = 0.5$, $r = 0.01$, $\nu = 0.02$
Optimal investment boundaries for the illiquid asset at $x = 15$ with various $\kappa$. Parameter values: $\beta_1 = 0.1$, $\beta_2 = 0.15$, $\sigma_1 = 0.2$, $\sigma_2 = 0.25$, $\delta_1 = 1$, $\delta_2 = 0.4$, $\lambda = 1$, $\alpha = 0.01$, $\theta = 0.01$, $\gamma = 0.5$, $r = 0.01$, $\nu = 0.02$, $\underset{\bar{}}{l} = -0.5$, $\bar{l} = 0.7$
Summary of Default Parameters for Numerical Analysis
 Parameter Value Parameter Value $\beta_1\; \;$ 0.1 $\rho\; \;$ 0.8 $\beta_2\; \;$ 0.15 $\alpha\; \;$ 0.01 $\delta_1\; \;$ 1 $\theta\; \;$ 0.01 $\delta_2\; \;$ 0.4 $\gamma\; \;$ 0.5 $\sigma_1\; \;$ 0.2 $r\; \;$ 0.01 $\sigma_2\; \;$ 0.25 $\nu\; \;$ 0.02 $\lambda\; \;$ 1
 Parameter Value Parameter Value $\beta_1\; \;$ 0.1 $\rho\; \;$ 0.8 $\beta_2\; \;$ 0.15 $\alpha\; \;$ 0.01 $\delta_1\; \;$ 1 $\theta\; \;$ 0.01 $\delta_2\; \;$ 0.4 $\gamma\; \;$ 0.5 $\sigma_1\; \;$ 0.2 $r\; \;$ 0.01 $\sigma_2\; \;$ 0.25 $\nu\; \;$ 0.02 $\lambda\; \;$ 1
 [1] Kevin Kuo, Phong Luu, Duy Nguyen, Eric Perkerson, Katherine Thompson, Qing Zhang. Pairs trading: An optimal selling rule. Mathematical Control & Related Fields, 2015, 5 (3) : 489-499. doi: 10.3934/mcrf.2015.5.489 [2] Jan Prüss, Jürgen Saal, Gieri Simonett. Singular limits for the two-phase Stefan problem. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5379-5405. doi: 10.3934/dcds.2013.33.5379 [3] Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015 [4] Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51 [5] Z. Foroozandeh, Maria do rosário de Pinho, M. Shamsi. On numerical methods for singular optimal control problems: An application to an AUV problem. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2219-2235. doi: 10.3934/dcdsb.2019092 [6] Térence Bayen, Marc Mazade, Francis Mairet. Analysis of an optimal control problem connected to bioprocesses involving a saturated singular arc. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 39-58. doi: 10.3934/dcdsb.2015.20.39 [7] Alfredo Daniel Garcia, Martin Andrés Szybisz. Financial liquidity: An emergent phenomena. Journal of Dynamics & Games, 2020, 7 (3) : 209-224. doi: 10.3934/jdg.2020015 [8] Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control & Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018 [9] Chun Shen, Wancheng Sheng, Meina Sun. The asymptotic limits of solutions to the Riemann problem for the scaled Leroux system. Communications on Pure & Applied Analysis, 2018, 17 (2) : 391-411. doi: 10.3934/cpaa.2018022 [10] Alain Bensoussan, John Liu, Jiguang Yuan. Singular control and impulse control: A common approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 27-57. doi: 10.3934/dcdsb.2010.13.27 [11] William Ott, Qiudong Wang. Periodic attractors versus nonuniform expansion in singular limits of families of rank one maps. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 1035-1054. doi: 10.3934/dcds.2010.26.1035 [12] Yvette Kosmann-Schwarzbach. Dirac pairs. Journal of Geometric Mechanics, 2012, 4 (2) : 165-180. doi: 10.3934/jgm.2012.4.165 [13] Annamaria Canino, Luigi Montoro, Berardino Sciunzi. The jumping problem for nonlocal singular problems. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6747-6760. doi: 10.3934/dcds.2019293 [14] Min Shen, Gabriel Turinici. Liquidity generated by heterogeneous beliefs and costly estimations. Networks & Heterogeneous Media, 2012, 7 (2) : 349-361. doi: 10.3934/nhm.2012.7.349 [15] Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinite-dimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, , () : -. doi: 10.3934/puqr.2021006 [16] Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102 [17] M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223 [18] Nacira Agram, Astrid Hilbert, Bernt Øksendal. Singular control of SPDEs with space-mean dynamics. Mathematical Control & Related Fields, 2020, 10 (2) : 425-441. doi: 10.3934/mcrf.2020004 [19] Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 [20] Claude Bardos, Nicolas Besse. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinetic & Related Models, 2013, 6 (4) : 893-917. doi: 10.3934/krm.2013.6.893

2019 Impact Factor: 1.366

## Tools

Article outline

Figures and Tables