-
Previous Article
Parametric Smith iterative algorithms for discrete Lyapunov matrix equations
- JIMO Home
- This Issue
-
Next Article
Numerical solution to an inverse problem on a determination of places and capacities of sources in the hyperbolic systems
Some inequalities for the minimum M-eigenvalue of elasticity M-tensors
School of Mathematics, Zunyi Normal College, Zunyi, Guizhou 563006, China |
In this paper, we derive some lower bounds for the minimum M-eigenvalue of elasticity M-tensors, these bounds only depend on the elements of the elasticity M-tensors and they are easy to be verified. Comparison theorems for elasticity M-tensors are also given.
References:
[1] |
K. C. Chang, L. Q. Qi and G. L. Zhou,
Singular values of a real rectangular tensor, J. Math. Anal. Appl., 370 (2010), 284-294.
doi: 10.1016/j.jmaa.2010.04.037. |
[2] |
J. Cui, G. Peng, Q. Lu and Z. Huang,
Several new estimates of the minimum H -eigenvalue for nonsingular M-tensors, Bull. of the Malaysian Math. Sciences Soc., 42 (2019), 1213-1236.
doi: 10.1007/s40840-017-0544-2. |
[3] |
W. Ding, J. Liu, L. Q. Qi and H. Yan, Elasticity M-tensors and the strong ellipticity condition, preprint, arXiv: 1705.09911v2. |
[4] |
W. Ding, L. Q. Qi and Y. Wei,
M-tensors and nonsingular M-tensors, Linear Algebra and its Appl., 439 (2013), 3264-3278.
doi: 10.1016/j.laa.2013.08.038. |
[5] |
D. Han, H. Dai and L. Q. Qi,
Conditions for strong ellipticity of anisotropic elastic materials, J. of Elasticity, 97 (2009), 1-13.
doi: 10.1007/s10659-009-9205-5. |
[6] |
Z. Huang and L. Q. Qi,
Positive definiteness of paired symmetric tensors and elasticity tensors, J. of Computational and Appl. Math., 388 (2018), 22-43.
doi: 10.1016/j.cam.2018.01.025. |
[7] |
Z. Huang, L. Wang, Z. Xu and J. Cui,
Some new inequalities for the minimum H-eigenvalue of nonsingular M-tensors, Linear Algebra and its Appl., 558 (2018), 146-173.
doi: 10.1016/j.laa.2018.08.023. |
[8] |
C. Q. Li and Y. T. Li,
An eigenvalue localization set for tensors with applications to determine the positive (semi-) deffiniteness of tensors, Linear and Multilinear Algebra, 64 (2016), 587-601.
doi: 10.1080/03081087.2015.1049582. |
[9] |
C. Q. Li, Y. T. Li and X. Kong,
New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.
doi: 10.1002/nla.1858. |
[10] |
L. Q. Qi, H. Dai and D. Han,
Conditions for strong ellipticity and M-eigenvalues, Frontiers of Math. in China, 4 (2009), 349-364.
doi: 10.1007/s11464-009-0016-6. |
[11] |
Y. J. Wang, L. Q. Qi and X. Z. Zhang,
A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.
doi: 10.1002/nla.633. |
[12] |
Y. N. Yang and Q. Z. Yang,
Further results for Perron-Frobenius Theorem for nonnegative tensors II, SIAM. J. Matrix Anal. Appl., 32 (2011), 1236-1250.
doi: 10.1137/100813671. |
[13] |
L. Zhang, L. Qi and G. Zhou,
M-tensors and some applications, SIAM. J. Matrix Anal. Appl., 32 (2014), 437-452.
doi: 10.1137/130915339. |
[14] |
J. X. Zhao and C. Q. Li,
Singular value inclusion sets for rectangular tensors, Linear Multilinear Algebra, 66 (2018), 1333-1350.
doi: 10.1080/03081087.2017.1351518. |
[15] |
L. M. Zubov and A. N. Rudev,
On necessary and sufficient conditions of strong ellipticity of equilibrium equations for certain classes of anisotropic linearly elastic materials, ZAMM - J. of Appl. Math. and Mechanics, 96 (2016), 1096-1102.
doi: 10.1002/zamm.201500167. |
show all references
References:
[1] |
K. C. Chang, L. Q. Qi and G. L. Zhou,
Singular values of a real rectangular tensor, J. Math. Anal. Appl., 370 (2010), 284-294.
doi: 10.1016/j.jmaa.2010.04.037. |
[2] |
J. Cui, G. Peng, Q. Lu and Z. Huang,
Several new estimates of the minimum H -eigenvalue for nonsingular M-tensors, Bull. of the Malaysian Math. Sciences Soc., 42 (2019), 1213-1236.
doi: 10.1007/s40840-017-0544-2. |
[3] |
W. Ding, J. Liu, L. Q. Qi and H. Yan, Elasticity M-tensors and the strong ellipticity condition, preprint, arXiv: 1705.09911v2. |
[4] |
W. Ding, L. Q. Qi and Y. Wei,
M-tensors and nonsingular M-tensors, Linear Algebra and its Appl., 439 (2013), 3264-3278.
doi: 10.1016/j.laa.2013.08.038. |
[5] |
D. Han, H. Dai and L. Q. Qi,
Conditions for strong ellipticity of anisotropic elastic materials, J. of Elasticity, 97 (2009), 1-13.
doi: 10.1007/s10659-009-9205-5. |
[6] |
Z. Huang and L. Q. Qi,
Positive definiteness of paired symmetric tensors and elasticity tensors, J. of Computational and Appl. Math., 388 (2018), 22-43.
doi: 10.1016/j.cam.2018.01.025. |
[7] |
Z. Huang, L. Wang, Z. Xu and J. Cui,
Some new inequalities for the minimum H-eigenvalue of nonsingular M-tensors, Linear Algebra and its Appl., 558 (2018), 146-173.
doi: 10.1016/j.laa.2018.08.023. |
[8] |
C. Q. Li and Y. T. Li,
An eigenvalue localization set for tensors with applications to determine the positive (semi-) deffiniteness of tensors, Linear and Multilinear Algebra, 64 (2016), 587-601.
doi: 10.1080/03081087.2015.1049582. |
[9] |
C. Q. Li, Y. T. Li and X. Kong,
New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.
doi: 10.1002/nla.1858. |
[10] |
L. Q. Qi, H. Dai and D. Han,
Conditions for strong ellipticity and M-eigenvalues, Frontiers of Math. in China, 4 (2009), 349-364.
doi: 10.1007/s11464-009-0016-6. |
[11] |
Y. J. Wang, L. Q. Qi and X. Z. Zhang,
A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.
doi: 10.1002/nla.633. |
[12] |
Y. N. Yang and Q. Z. Yang,
Further results for Perron-Frobenius Theorem for nonnegative tensors II, SIAM. J. Matrix Anal. Appl., 32 (2011), 1236-1250.
doi: 10.1137/100813671. |
[13] |
L. Zhang, L. Qi and G. Zhou,
M-tensors and some applications, SIAM. J. Matrix Anal. Appl., 32 (2014), 437-452.
doi: 10.1137/130915339. |
[14] |
J. X. Zhao and C. Q. Li,
Singular value inclusion sets for rectangular tensors, Linear Multilinear Algebra, 66 (2018), 1333-1350.
doi: 10.1080/03081087.2017.1351518. |
[15] |
L. M. Zubov and A. N. Rudev,
On necessary and sufficient conditions of strong ellipticity of equilibrium equations for certain classes of anisotropic linearly elastic materials, ZAMM - J. of Appl. Math. and Mechanics, 96 (2016), 1096-1102.
doi: 10.1002/zamm.201500167. |
[1] |
Chong Wang, Gang Wang, Lixia Liu. Sharp bounds on the minimum $M$-eigenvalue and strong ellipticity condition of elasticity $Z$-tensors-tensors. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021205 |
[2] |
Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial and Management Optimization, 2020, 16 (1) : 309-324. doi: 10.3934/jimo.2018153 |
[3] |
Haitao Che, Haibin Chen, Guanglu Zhou. New M-eigenvalue intervals and application to the strong ellipticity of fourth-order partially symmetric tensors. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3685-3694. doi: 10.3934/jimo.2020139 |
[4] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks and Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[5] |
Kaiping Liu, Haitao Che, Haibin Chen, Meixia Li. Parameterized S-type M-eigenvalue inclusion intervals for fourth-order partially symmetric tensors and its applications. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022077 |
[6] |
Yuyan Yao, Gang Wang. Sharp upper bounds on the maximum $M$-eigenvalue of fourth-order partially symmetric nonnegative tensors. Mathematical Foundations of Computing, 2022, 5 (1) : 33-44. doi: 10.3934/mfc.2021018 |
[7] |
Zhen Wang, Wei Wu. Bounds for the greatest eigenvalue of positive tensors. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1031-1039. doi: 10.3934/jimo.2014.10.1031 |
[8] |
Shenglong Hu, Zheng-Hai Huang, Hong-Yan Ni, Liqun Qi. Positive definiteness of Diffusion Kurtosis Imaging. Inverse Problems and Imaging, 2012, 6 (1) : 57-75. doi: 10.3934/ipi.2012.6.57 |
[9] |
Haibin Chen, Liqun Qi. Positive definiteness and semi-definiteness of even order symmetric Cauchy tensors. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1263-1274. doi: 10.3934/jimo.2015.11.1263 |
[10] |
Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. M/M/3/3 and M/M/4/4 retrial queues. Journal of Industrial and Management Optimization, 2009, 5 (3) : 431-451. doi: 10.3934/jimo.2009.5.431 |
[11] |
Gang Wang, Yiju Wang, Yuan Zhang. Brualdi-type inequalities on the minimum eigenvalue for the Fan product of M-tensors. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2551-2562. doi: 10.3934/jimo.2019069 |
[12] |
Julio C. Rebelo, Ana L. Silva. On the Burnside problem in Diff(M). Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 423-439. doi: 10.3934/dcds.2007.17.423 |
[13] |
Ruixue Zhao, Jinyan Fan. Quadratic tensor eigenvalue complementarity problems. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022073 |
[14] |
Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013 |
[15] |
Dequan Yue, Wuyi Yue, Gang Xu. Analysis of customers' impatience in an M/M/1 queue with working vacations. Journal of Industrial and Management Optimization, 2012, 8 (4) : 895-908. doi: 10.3934/jimo.2012.8.895 |
[16] |
Zsolt Saffer, Wuyi Yue. M/M/c multiple synchronous vacation model with gated discipline. Journal of Industrial and Management Optimization, 2012, 8 (4) : 939-968. doi: 10.3934/jimo.2012.8.939 |
[17] |
Chia-Huang Wu, Kuo-Hsiung Wang, Jau-Chuan Ke, Jyh-Bin Ke. A heuristic algorithm for the optimization of M/M/$s$ queue with multiple working vacations. Journal of Industrial and Management Optimization, 2012, 8 (1) : 1-17. doi: 10.3934/jimo.2012.8.1 |
[18] |
Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463 |
[19] |
Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008 |
[20] |
Hideaki Takagi. Unified and refined analysis of the response time and waiting time in the M/M/m FCFS preemptive-resume priority queue. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1945-1973. doi: 10.3934/jimo.2017026 |
2021 Impact Factor: 1.411
Tools
Metrics
Other articles
by authors
[Back to Top]