
-
Previous Article
Mean-CVaR portfolio selection model with ambiguity in distribution and attitude
- JIMO Home
- This Issue
-
Next Article
Some inequalities for the minimum M-eigenvalue of elasticity M-tensors
Parametric Smith iterative algorithms for discrete Lyapunov matrix equations
School of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China |
An iterative algorithm is established in this paper for solving the discrete Lyapunov matrix equations. The proposed algorithm contains a tunable parameter, and includes the Smith iteration as a special case, and thus is called the parametric Smith iterative algorithm. Some convergence conditions are developed for the proposed parametric Smith iterative algorithm. Moreover, the optimal parameter for the proposed algorithm to have the fastest convergence rate is also provided for a special case. Finally, numerical examples are employed to illustrate the effectiveness of the proposed algorithm.
References:
[1] |
S. Azou, P. Brehonnet, P. Vilbe and L. C. Calvez,
A new discrete impulse response Gramian and its application to model reduction, IEEE Transactions on Automatic Control, 45 (2000), 533-537.
doi: 10.1109/9.847738. |
[2] |
J. Bibby,
Axiomatisations of the average and a further generalisation of monotonic sequences, Glasgow Math. Journal, 15 (1974), 63-65.
doi: 10.1017/S0017089500002135. |
[3] |
M. Dehghan and M. Hajarian,
The general coupled matrix equations over generalized bisymmetric matrices, Linear Algebra and its Appl., 432 (2010), 1531-1552.
doi: 10.1016/j.laa.2009.11.014. |
[4] |
F. Ding and T. Chen,
Gradient based iterative algorithms for solving a class of matrix equations, IEEE Trans. on Automat. Control, 50 (2005), 1216-1221.
doi: 10.1109/TAC.2005.852558. |
[5] |
S. Hammarling,
Numerical solution of the discrete-time, convergent, non-negative definite Lyapunov equation, Systems and Control Letters, 17 (1991), 137-139.
doi: 10.1016/0167-6911(91)90039-H. |
[6] |
S. J. Hammarling,
Numerical solution of the stable, nonnegative definite Lyapunov equation, IMA J. of Numerical Anal., 2 (1982), 303-323.
doi: 10.1093/imanum/2.3.303. |
[7] |
T. Kailath, Linear Systems, Prentice-Hall, New Jersey, 1980. |
[8] |
L. Lv and Z. Zhang,
Finite iterative solutions to periodic Sylvester matrix equations, J. of the Franklin Institute, 354 (2017), 2358-2370.
doi: 10.1016/j.jfranklin.2017.01.004. |
[9] |
Q. Niu, X. Wang and L.-Z. Lu,
A relaxed gradient based algorithm for solving Sylvester equations, Asian Journal of Control, 13 (2011), 461-464.
doi: 10.1002/asjc.328. |
[10] |
T. Penzl,
A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAM J. on Scientific Computing, 21 (1999), 1401-1408.
doi: 10.1137/S1064827598347666. |
[11] |
V. Ptak,
The discrete Lyapunov equation in controllable canonical form, IEEE Trans. on Auto. Control, 26 (1981), 580-581.
doi: 10.1109/TAC.1981.1102644. |
[12] |
M. Sadkane and L. Grammont,
A note on the Lyapunov stability of periodic discrete-time systems, J. of Comp. and Appl. Math., 176 (2005), 463-466.
doi: 10.1016/j.cam.2004.08.012. |
[13] |
V. Sreeram and P. Agathoklis,
Model reduction of linear discrete systems via weighted impulse response gramians, Int. J. of Control, 53 (1991), 129-144.
doi: 10.1080/00207179108953613. |
[14] |
Z. Tian, C. M. Fan, Y. Deng and P. H. Wen,
New explicit iteration algorithms for solving coupled continuous Markovian jump Lyapunov matrix equations, J. of the Franklin Institute, 355 (2018), 8346-8372.
doi: 10.1016/j.jfranklin.2018.09.027. |
[15] |
Z. Tian and C. Gu,
A numerical algorithm for Lyapunov equations, Appl. Math. and Comp., 202 (2008), 44-53.
doi: 10.1016/j.amc.2007.12.057. |
[16] |
Z. Tian, M. Tian, C. Gu and X. Hao,
An accelerated Jacobi-gradient based iterative algorithm for solving Sylvester matrix equations, Filomat, 8 (2017), 2381-2390.
doi: 10.2298/FIL1708381T. |
[17] |
V. Varga,
A note on Hammarling's algorithm for the discrete Lyapunov equation, Systems and Control Letters, 15 (1990), 273-275.
doi: 10.1016/0167-6911(90)90121-A. |
[18] |
Y. Zhang, A. G. Wu and C. T. Shao,
Implicit iterative algorithms with a tuning parameter for discrete stochastic Lyapunov matrix equations, IET Control Theory and Appl., 11 (2017), 1554-1560.
doi: 10.1049/iet-cta.2016.1601. |
[19] |
Y. Zhang, A. G. Wu and H. J. Sun,
An implicit iterative algorithm with a tuning parameter for Itô Lyapunov matrix equations, Int. J. of Systems Science, 49 (2018), 425-434.
doi: 10.1080/00207721.2017.1407009. |
show all references
References:
[1] |
S. Azou, P. Brehonnet, P. Vilbe and L. C. Calvez,
A new discrete impulse response Gramian and its application to model reduction, IEEE Transactions on Automatic Control, 45 (2000), 533-537.
doi: 10.1109/9.847738. |
[2] |
J. Bibby,
Axiomatisations of the average and a further generalisation of monotonic sequences, Glasgow Math. Journal, 15 (1974), 63-65.
doi: 10.1017/S0017089500002135. |
[3] |
M. Dehghan and M. Hajarian,
The general coupled matrix equations over generalized bisymmetric matrices, Linear Algebra and its Appl., 432 (2010), 1531-1552.
doi: 10.1016/j.laa.2009.11.014. |
[4] |
F. Ding and T. Chen,
Gradient based iterative algorithms for solving a class of matrix equations, IEEE Trans. on Automat. Control, 50 (2005), 1216-1221.
doi: 10.1109/TAC.2005.852558. |
[5] |
S. Hammarling,
Numerical solution of the discrete-time, convergent, non-negative definite Lyapunov equation, Systems and Control Letters, 17 (1991), 137-139.
doi: 10.1016/0167-6911(91)90039-H. |
[6] |
S. J. Hammarling,
Numerical solution of the stable, nonnegative definite Lyapunov equation, IMA J. of Numerical Anal., 2 (1982), 303-323.
doi: 10.1093/imanum/2.3.303. |
[7] |
T. Kailath, Linear Systems, Prentice-Hall, New Jersey, 1980. |
[8] |
L. Lv and Z. Zhang,
Finite iterative solutions to periodic Sylvester matrix equations, J. of the Franklin Institute, 354 (2017), 2358-2370.
doi: 10.1016/j.jfranklin.2017.01.004. |
[9] |
Q. Niu, X. Wang and L.-Z. Lu,
A relaxed gradient based algorithm for solving Sylvester equations, Asian Journal of Control, 13 (2011), 461-464.
doi: 10.1002/asjc.328. |
[10] |
T. Penzl,
A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAM J. on Scientific Computing, 21 (1999), 1401-1408.
doi: 10.1137/S1064827598347666. |
[11] |
V. Ptak,
The discrete Lyapunov equation in controllable canonical form, IEEE Trans. on Auto. Control, 26 (1981), 580-581.
doi: 10.1109/TAC.1981.1102644. |
[12] |
M. Sadkane and L. Grammont,
A note on the Lyapunov stability of periodic discrete-time systems, J. of Comp. and Appl. Math., 176 (2005), 463-466.
doi: 10.1016/j.cam.2004.08.012. |
[13] |
V. Sreeram and P. Agathoklis,
Model reduction of linear discrete systems via weighted impulse response gramians, Int. J. of Control, 53 (1991), 129-144.
doi: 10.1080/00207179108953613. |
[14] |
Z. Tian, C. M. Fan, Y. Deng and P. H. Wen,
New explicit iteration algorithms for solving coupled continuous Markovian jump Lyapunov matrix equations, J. of the Franklin Institute, 355 (2018), 8346-8372.
doi: 10.1016/j.jfranklin.2018.09.027. |
[15] |
Z. Tian and C. Gu,
A numerical algorithm for Lyapunov equations, Appl. Math. and Comp., 202 (2008), 44-53.
doi: 10.1016/j.amc.2007.12.057. |
[16] |
Z. Tian, M. Tian, C. Gu and X. Hao,
An accelerated Jacobi-gradient based iterative algorithm for solving Sylvester matrix equations, Filomat, 8 (2017), 2381-2390.
doi: 10.2298/FIL1708381T. |
[17] |
V. Varga,
A note on Hammarling's algorithm for the discrete Lyapunov equation, Systems and Control Letters, 15 (1990), 273-275.
doi: 10.1016/0167-6911(90)90121-A. |
[18] |
Y. Zhang, A. G. Wu and C. T. Shao,
Implicit iterative algorithms with a tuning parameter for discrete stochastic Lyapunov matrix equations, IET Control Theory and Appl., 11 (2017), 1554-1560.
doi: 10.1049/iet-cta.2016.1601. |
[19] |
Y. Zhang, A. G. Wu and H. J. Sun,
An implicit iterative algorithm with a tuning parameter for Itô Lyapunov matrix equations, Int. J. of Systems Science, 49 (2018), 425-434.
doi: 10.1080/00207721.2017.1407009. |








[1] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[2] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[3] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[4] |
Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066 |
[5] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[6] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[7] |
Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067 |
[8] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[9] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[10] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[11] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[12] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[13] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[14] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[15] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[16] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[17] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[18] |
Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 |
[19] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[20] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]