November  2020, 16(6): 3065-3081. doi: 10.3934/jimo.2019094

Mean-CVaR portfolio selection model with ambiguity in distribution and attitude

1. 

Fujian Province University Key Laboratory of Computational Science, School of Mathematical Sciences, Huaqiao University, Fujian, China

2. 

Sun Yat-sen Business School, Sun Yat-sen University, Guangzhou, China

* Corresponding author: Zhongfei Li

Received  November 2018 Revised  March 2019 Published  November 2020 Early access  July 2019

Fund Project: The first author was supported in part by the Program for Innovative Research Team in Science and Technology in Fujian Province University, and Quanzhou High-Level Talents Support Plan (No. 2017ZT012), and the Scientific Research Foundation of Huaqiao University (No. 18BS311). The third author was supported by the National Natural Science Foundation of China (No. 71721001) and the Natural Science Research Team of Guangdong Province of China (No. 2014A030312003)

In this paper, we develop $ \alpha $-robust (maxmin) models, where the Conditional Value-at-Risk (CVaR) is to be optimized under ambiguity in distribution, mean returns, and covariance matrix. Our models allow the investor to distinguish ambiguity and ambiguity attitude with different levels of ambiguity aversion. For the case when there is a risk-free asset and short-selling is allowed, we obtain the analytic solution for the $ \alpha $-robust CVaR optimization model subject to a minimum mean return constraint. Moreover, we also derive a closed-form portfolio rule for the $ \alpha $-robust mean-CVaR optimization problem in a market without the risk-less asset. The results obtained from solving the numerical example show that if an investor is more ambiguity-averse, his investment strategy will always be more conservative.

Citation: Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3065-3081. doi: 10.3934/jimo.2019094
References:
[1]

G. Bayraksan and D. K. Love, Data-driven stochastic programming using phi-divergences, in The Operations Research Revolution, INFORMS, 2015, 1–19. doi: 10.1287/educ.2015.0134.

[2]

A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Ops. Research Letters, 25 (1999), 1-13.  doi: 10.1016/S0167-6377(99)00016-4.

[3]

M. J. Best and R. R. Grauer, Sensitivity analysis for mean-variance portfolio problems, Mgmt. Science, 37 (1991), 980-989. 

[4]

P. BossaertsP. GhirardatoS. Guarnaschelli and W. R. Zame, Ambiguity in asset markets: Theory and experiment, The Review of Finan. Studies, 23 (2010), 1325-1359.  doi: 10.1093/rfs/hhp106.

[5]

J. ChengR. ChenH. NajmA. PinarC. Safta and J. P. Watso, Distributionally robust optimization with principal component analysis, SIAM J. on Optimization, 28 (2018), 1817-1841.  doi: 10.1137/16M1075910.

[6]

E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven problems, Ops. Research, 58 (2010), 595-612.  doi: 10.1287/opre.1090.0741.

[7]

D. Ellsberg, Risk, ambiguity, and the savage axioms, The Quarterly Journal of Economics, 75 (1961), 643-669.  doi: 10.2307/1884324.

[8]

P. M. Esfahani and D. Kuhn, Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations, Math. Programming, 171 (2018), 115-166.  doi: 10.1007/s10107-017-1172-1.

[9]

C. R. Fox and A. Tversky, Ambiguity aversion and comparative ignorance, The Quarterly Journal of Economics, 110 (1995), 585-603.  doi: 10.2307/2946693.

[10]

P. GhirardatoF. Maccheroni and M. Marinacci, Differentiating ambiguity and ambiguity attitude, J. of Econ. Theory, 118 (2004), 133-173.  doi: 10.1016/j.jet.2003.12.004.

[11]

I. Gilboa and D. Schmeidler, Maxmin expected utility with non-unique prior, J. of Math. Econ., 18 (1989), 141-153.  doi: 10.1016/0304-4068(89)90018-9.

[12]

C. Heath and A. Tversky, Preference and belief: Ambiguity and competence in choice under uncertainty, J. of Risk and Uncertainty, 4 (1991), 5-28.  doi: 10.1007/BF00057884.

[13]

R. Jiang and Y. Guan, Data-driven chance constrained stochastic program, Math. Programming, 158 (2016), 291-327.  doi: 10.1007/s10107-015-0929-7.

[14]

Z. KangX. LiZ. Li and S. Zhu, Data-driven robust mean-CVaR portfolio selection under distribution ambiguity, Quant. Finan., 19 (2019), 105-121.  doi: 10.1080/14697688.2018.1466057.

[15]

Z. Kang and Z. Li, An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution, Math. Methods of Ops. Research, 87 (2018), 169-195.  doi: 10.1007/s00186-017-0614-0.

[16]

B. LiD. Li and D. Xiong, Alpha-robust mean-variance reinsurance-investment strategy, J. of Econ. Dynamics and Control, 70 (2016), 101-123.  doi: 10.1016/j.jedc.2016.07.001.

[17]

B. LiL. Wang and D. Xiong, Robust utility maximization with extremely ambiguity-loving and ambiguity-aversion preferences, Stochastics, 90 (2018), 524-538.  doi: 10.1080/17442508.2017.1371176.

[18]

J. LiuZ. ChenA. Lisser and Z. Xu, Closed-Form optimal portfolios of distributionally robust mean-CVaR problems with unknown mean and variance, Appl. Math. & Optimization, 79 (2019), 671-693.  doi: 10.1007/s00245-017-9452-y.

[19]

S. LotfiM. Salahi and F. Mehrdoust, Adjusted robust mean-value-at-risk model: Less conservative robust portfolios, Optimization and Engineering, 18 (2017), 467-497.  doi: 10.1007/s11081-016-9340-3.

[20]

S. Lotfi and S. A. Zenios, Robust VaR and CVaR optimization under joint ambiguity in distributions, means, and covariances, European J. of Oper. Research, 269 (2018), 556-576.  doi: 10.1016/j.ejor.2018.02.003.

[21]

A. B. Paç and M. Ç. Pinar, Robust portfolio choice with CVaR and VaR under distribution and mean return ambiguity, TOP, 22 (2014), 875-891.  doi: 10.1007/s11750-013-0303-y.

[22]

I. Popescu, Robust mean-covariance solutions for stochastic optimization, Ops. Research, 55 (2007), 98–112. doi: 10.1287/opre.1060.0353.

[23]

A. G. Quaranta and A. Zaffaroni, Robust optimization of Conditional Value-at-Risk and portfolio selection, J. of Banking & Finance, 32 (2008), 2046-2056.  doi: 10.1016/j.jbankfin.2007.12.025.

[24]

K. Ruan and M. Fukushima, Robust portfolio selection with a combined WCVaR and factor model, J. of Indust. & Mgmt. Optimization, 8 (2012), 343-362.  doi: 10.3934/jimo.2012.8.343.

[25]

W. WiesemannD. Kuhn and M. Sim, Distributionally robust convex optimization, Ops. Research, 62 (2014), 1358-1376.  doi: 10.1287/opre.2014.1314.

[26]

S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management, Ops. Research, 57 (2009), 1155-1168.  doi: 10.1287/opre.1080.0684.

[27]

W. Zhu and H. Shao, Closed-form solutions for extremely-case distortion risk measures and applications to robust portfolio management, 2018. Available from: https://ssrn.com/abstract=3103458.

show all references

References:
[1]

G. Bayraksan and D. K. Love, Data-driven stochastic programming using phi-divergences, in The Operations Research Revolution, INFORMS, 2015, 1–19. doi: 10.1287/educ.2015.0134.

[2]

A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Ops. Research Letters, 25 (1999), 1-13.  doi: 10.1016/S0167-6377(99)00016-4.

[3]

M. J. Best and R. R. Grauer, Sensitivity analysis for mean-variance portfolio problems, Mgmt. Science, 37 (1991), 980-989. 

[4]

P. BossaertsP. GhirardatoS. Guarnaschelli and W. R. Zame, Ambiguity in asset markets: Theory and experiment, The Review of Finan. Studies, 23 (2010), 1325-1359.  doi: 10.1093/rfs/hhp106.

[5]

J. ChengR. ChenH. NajmA. PinarC. Safta and J. P. Watso, Distributionally robust optimization with principal component analysis, SIAM J. on Optimization, 28 (2018), 1817-1841.  doi: 10.1137/16M1075910.

[6]

E. Delage and Y. Ye, Distributionally robust optimization under moment uncertainty with application to data-driven problems, Ops. Research, 58 (2010), 595-612.  doi: 10.1287/opre.1090.0741.

[7]

D. Ellsberg, Risk, ambiguity, and the savage axioms, The Quarterly Journal of Economics, 75 (1961), 643-669.  doi: 10.2307/1884324.

[8]

P. M. Esfahani and D. Kuhn, Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations, Math. Programming, 171 (2018), 115-166.  doi: 10.1007/s10107-017-1172-1.

[9]

C. R. Fox and A. Tversky, Ambiguity aversion and comparative ignorance, The Quarterly Journal of Economics, 110 (1995), 585-603.  doi: 10.2307/2946693.

[10]

P. GhirardatoF. Maccheroni and M. Marinacci, Differentiating ambiguity and ambiguity attitude, J. of Econ. Theory, 118 (2004), 133-173.  doi: 10.1016/j.jet.2003.12.004.

[11]

I. Gilboa and D. Schmeidler, Maxmin expected utility with non-unique prior, J. of Math. Econ., 18 (1989), 141-153.  doi: 10.1016/0304-4068(89)90018-9.

[12]

C. Heath and A. Tversky, Preference and belief: Ambiguity and competence in choice under uncertainty, J. of Risk and Uncertainty, 4 (1991), 5-28.  doi: 10.1007/BF00057884.

[13]

R. Jiang and Y. Guan, Data-driven chance constrained stochastic program, Math. Programming, 158 (2016), 291-327.  doi: 10.1007/s10107-015-0929-7.

[14]

Z. KangX. LiZ. Li and S. Zhu, Data-driven robust mean-CVaR portfolio selection under distribution ambiguity, Quant. Finan., 19 (2019), 105-121.  doi: 10.1080/14697688.2018.1466057.

[15]

Z. Kang and Z. Li, An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution, Math. Methods of Ops. Research, 87 (2018), 169-195.  doi: 10.1007/s00186-017-0614-0.

[16]

B. LiD. Li and D. Xiong, Alpha-robust mean-variance reinsurance-investment strategy, J. of Econ. Dynamics and Control, 70 (2016), 101-123.  doi: 10.1016/j.jedc.2016.07.001.

[17]

B. LiL. Wang and D. Xiong, Robust utility maximization with extremely ambiguity-loving and ambiguity-aversion preferences, Stochastics, 90 (2018), 524-538.  doi: 10.1080/17442508.2017.1371176.

[18]

J. LiuZ. ChenA. Lisser and Z. Xu, Closed-Form optimal portfolios of distributionally robust mean-CVaR problems with unknown mean and variance, Appl. Math. & Optimization, 79 (2019), 671-693.  doi: 10.1007/s00245-017-9452-y.

[19]

S. LotfiM. Salahi and F. Mehrdoust, Adjusted robust mean-value-at-risk model: Less conservative robust portfolios, Optimization and Engineering, 18 (2017), 467-497.  doi: 10.1007/s11081-016-9340-3.

[20]

S. Lotfi and S. A. Zenios, Robust VaR and CVaR optimization under joint ambiguity in distributions, means, and covariances, European J. of Oper. Research, 269 (2018), 556-576.  doi: 10.1016/j.ejor.2018.02.003.

[21]

A. B. Paç and M. Ç. Pinar, Robust portfolio choice with CVaR and VaR under distribution and mean return ambiguity, TOP, 22 (2014), 875-891.  doi: 10.1007/s11750-013-0303-y.

[22]

I. Popescu, Robust mean-covariance solutions for stochastic optimization, Ops. Research, 55 (2007), 98–112. doi: 10.1287/opre.1060.0353.

[23]

A. G. Quaranta and A. Zaffaroni, Robust optimization of Conditional Value-at-Risk and portfolio selection, J. of Banking & Finance, 32 (2008), 2046-2056.  doi: 10.1016/j.jbankfin.2007.12.025.

[24]

K. Ruan and M. Fukushima, Robust portfolio selection with a combined WCVaR and factor model, J. of Indust. & Mgmt. Optimization, 8 (2012), 343-362.  doi: 10.3934/jimo.2012.8.343.

[25]

W. WiesemannD. Kuhn and M. Sim, Distributionally robust convex optimization, Ops. Research, 62 (2014), 1358-1376.  doi: 10.1287/opre.2014.1314.

[26]

S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to robust portfolio management, Ops. Research, 57 (2009), 1155-1168.  doi: 10.1287/opre.1080.0684.

[27]

W. Zhu and H. Shao, Closed-form solutions for extremely-case distortion risk measures and applications to robust portfolio management, 2018. Available from: https://ssrn.com/abstract=3103458.

Figure 1.  The left panel shows that $ k(\alpha) $ and $ b(\alpha) $ are decreasing in $ \alpha $. The efficient frontier lines for $ \alpha $-robust CVaR model are shown in the right panel. The steepest line (Dash-dot line, black) and flattest line (Solid line, blue) correspond to the cases $ \alpha = 0.5 $ and $ \alpha = 1 $, respectively. ($ H = 0.4722 $, $ r_f = 1.01 $, $ \gamma_1 = 0.0001 $, $ \gamma_2 = 1.2 $, $ \beta = 0.95 $)
Figure 2.  Efficient frontiers of the $ \alpha $-maxmin mean-CVaR model with different parameter $ \alpha $. The $ \alpha $-maxmin portfolio CVaR in the $ x $-axis ($ \alpha $-maxmin portfolio return in the $ y $-axis) is a convex mixture between the worst-case and best-case values of CVaR risk measures (expected return)
Figure 3.  Effects of $ \alpha $ (the level of ambiguity aversion) on the $ \alpha $-maxmin portfolio return and $ \alpha $-maxmin portfolio CVaR
Figure 4.  Effect of $ \alpha $ (the level of ambiguity aversion) on the composition of efficient portfolios from the $ \alpha $-maxmin mean-CVaR model. The percentage allocation of assets 1-3 in the optimal allocation $ x^* $ have been illustrated in different colors
Figure 5.  The variations of optimal portfolio strategies under different levels of ambiguity $ \gamma_1 $ (for a given $ \gamma_2 = 1.2 $) and $ \gamma_2 $ (for a given $ \gamma_1 = 0.0001 $). The percentage allocation of assets 1-3 in the optimal allocation $ x^* $ have been illustrated in different colors
[1]

Shihan Di, Dong Ma, Peibiao Zhao. $ \alpha $-robust portfolio optimization problem under the distribution uncertainty. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022054

[2]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[3]

Luigi C. Berselli, Argus Adrian Dunca, Roger Lewandowski, Dinh Duong Nguyen. Modeling error of $ \alpha $-models of turbulence on a two-dimensional torus. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4613-4643. doi: 10.3934/dcdsb.2020305

[4]

Yong Zhou, Jia Wei He. New results on controllability of fractional evolution systems with order $ \alpha\in (1,2) $. Evolution Equations and Control Theory, 2021, 10 (3) : 491-509. doi: 10.3934/eect.2020077

[5]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, 2021, 29 (4) : 2619-2636. doi: 10.3934/era.2021004

[6]

Purshottam Narain Agrawal, Jitendra Kumar Singh. Better approximation by a Durrmeyer variant of $ \alpha- $Baskakov operators. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2021040

[7]

Jiao Song, Jiang-Lun Wu, Fangzhou Huang. First jump time in simulation of sampling trajectories of affine jump-diffusions driven by $ \alpha $-stable white noise. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4127-4142. doi: 10.3934/cpaa.2020184

[8]

Avadhesh Kumar, Ankit Kumar, Ramesh Kumar Vats, Parveen Kumar. Approximate controllability of neutral delay integro-differential inclusion of order $ \alpha\in (1, 2) $ with non-instantaneous impulses. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021058

[9]

Liang Ding, Weimin Han. Morozov's discrepancy principle for $ \alpha\ell_1-\beta\ell_2 $ sparsity regularization. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022035

[10]

Ramalingam Sakthivel, Palanisamy Selvaraj, Yeong-Jae Kim, Dong-Hoon Lee, Oh-Min Kwon, Rathinasamy Sakthivel. Robust $ H_\infty $ resilient event-triggered control design for T-S fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022028

[11]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure and Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[12]

Jennifer D. Key, Bernardo G. Rodrigues. Binary codes from $ m $-ary $ n $-cubes $ Q^m_n $. Advances in Mathematics of Communications, 2021, 15 (3) : 507-524. doi: 10.3934/amc.2020079

[13]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[14]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

[15]

Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3603-3631. doi: 10.3934/jimo.2020135

[16]

Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266

[17]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial and Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[18]

Eun-Kyung Cho, Cunsheng Ding, Jong Yoon Hyun. A spectral characterisation of $ t $-designs and its applications. Advances in Mathematics of Communications, 2019, 13 (3) : 477-503. doi: 10.3934/amc.2019030

[19]

Sugata Gangopadhyay, Goutam Paul, Nishant Sinha, Pantelimon Stǎnicǎ. Generalized nonlinearity of $ S$-boxes. Advances in Mathematics of Communications, 2018, 12 (1) : 115-122. doi: 10.3934/amc.2018007

[20]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (523)
  • HTML views (926)
  • Cited by (0)

Other articles
by authors

[Back to Top]