• Previous Article
    An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints
  • JIMO Home
  • This Issue
  • Next Article
    Application of a modified CES production function model based on improved firefly algorithm
doi: 10.3934/jimo.2019099

A chance-constrained stochastic model predictive control problem with disturbance feedback

1. 

College of Electrical and Information Technology, Sichuan University, Chengdu, China

2. 

Business School, The University of Edinburgh, Edinburgh, UK

3. 

School of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China

4. 

Inovation and Entrepreneurship College, Xihua University, Chengdu, China

5. 

College of Electrical and Information Technology, Sichuan University, Chengdu, China

* Corresponding author: Tianshi Hu

Received  February 2019 Revised  March 2019 Published  July 2019

Fund Project: This work was partially supported by a grant from National Natural Science Foundation of China under number 61701124, a grant from Science and Technology on Space Intelligent Control Laboratory, No. KGJZDSYS-2018-03, a grant from Sichuan Province Government under the application number 2019YJ0105, and a grant from Fundamental Research Funds for the Central Universities (China)

In this paper, we develop two algorithms for stochastic model predictive control (SMPC) problems with discrete linear systems. Participially, chance constraints on the state and control are considered. Different from the state-of-the-art robust model predictive control (RMPC) algorithm, the proposed is less conservative. Meanwhile, the proposed algorithms do not assume the full knowledge of the disturbance distribution. It only requires the mean and variance of the disturbance. Rigorous computational analysis is carried out for the proposed algorithms. Numerical results are provided to demonstrate the effectiveness and the superior of the proposed SMPC algorithms.

Citation: Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019099
References:
[1]

L. MagniG. D. Nicolao and R. Scattolini, Robust model predictive control for nonlinear discrete-time systems, Int. J. of Robust & Nonlinear Control, 13 (2003), 229-246. doi: 10.1002/rnc.815. Google Scholar

[2]

D. M. Raimondo, D. Limon and M. Lazar, Min-max model predictive control of nonlinear systems: A unifying overview on stability, European J. of Control, 15 (2009), 5-21. doi: 10.3166/ejc.15.5-21. Google Scholar

[3]

G. C. Calafiore and L. Fagiano, Robust model predictive control via scenario optimization, IEEE Transactions on Automatic Control, 58 (2013), 219-224. doi: 10.1109/TAC.2012.2203054. Google Scholar

[4]

M. CannonB. Kouvaritakis and D. Ng, Probabilistic tubes in linear stochastic model predictive control, Systems & Control Letters, 58 (2009), 747-753. doi: 10.1016/j.sysconle.2009.08.004. Google Scholar

[5]

P. HokayemE. CinquemaniD. ChatterjeeF. Ramponi and J. Lygeros, Stochastic receding horizon control with output feedback and bounded controls, Automatica, 48 (2012), 77-88. doi: 10.1016/j.automatica.2011.09.048. Google Scholar

[6]

P. HokayemD. Chatterjee and J. Lygeros, On stochastic receding horizon control with bounded control inputs: A vector space approach, IEE Trans. on Automat. Control, 56 (2011), 2704-2710. doi: 10.1109/TAC.2011.2159422. Google Scholar

[7]

M. Farina and R. Scattolini, Model predictive control of linear systems with multiplicative unbounded uncertainty and chance constraints, Automatica, 70 (2016), 258-265. doi: 10.1016/j.automatica.2016.04.008. Google Scholar

[8]

M. FarinaL. GiulioniL. Magni and R. Scattolini, An approach to output-feedback MPC of stochastic linear discrete-time systems, Automatica, 55 (2015), 140-149. doi: 10.1016/j.automatica.2015.02.039. Google Scholar

[9]

J. A. Paulson, E. A. Buehler, R. D. Braatz and A. Mesbah, Stochastic model predictive control with joint chance constraints, Int. J. of Control, (2017), 1–14. doi: 10.1080/00207179.2017.1323351. Google Scholar

[10]

G. Schildbach, P. Goulart and M. Morari, Linear controller design for chance constrained systems, Automatica, 51 (2015), 278-284. doi: 10.1016/j.automatica.2014.10.096. Google Scholar

[11]

M. Grantand and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, (2014). Retrieved from: http://cvxr.com/cvx.Google Scholar

[12]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. on Optim., 17 (2006), 969-996. doi: 10.1137/050622328. Google Scholar

[13]

A. Bental and M. Teboulle, Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming. Mgmt. Science, (2011).Google Scholar

[14]

D. Bernardini and A. Bemporad, Scenario-based model predictive control of stochastic constrained linear systems, IEEE Conference on Decision & Control, IEEE, (2009). doi: 10.1109/CDC.2009.5399917. Google Scholar

[15]

M. S. LoboL. VandenbergheS. Boyd and H. Lebret, Applications of second-order cone programming, Linear Algebra and its Appl., 284 (1998), 193-228. doi: 10.1016/S0024-3795(98)10032-0. Google Scholar

[16]

M. Farina, L. Giulioni and L. Magni, A probabilistic approach to model predictive control, in 52nd IEEE Conference on Decision and Control, IEEE, (2013). doi: 10.1109/CDC.2013.6761117. Google Scholar

[17]

D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814. doi: 10.1016/S0005-1098(99)00214-9. Google Scholar

[18]

W. ChenM. SimJ. Sun and C.-P. Teo, From CVaR to uncertainty set: Implications in joint chance-constrained optimization, Ops. Research, 58 (2010), 470-485. doi: 10.1287/opre.1090.0712. Google Scholar

[19]

E. CinquemaniM. AgarwalD. Chatterjee and J. Lygeros, Convexity and convex approximations of discrete-time stochastic control problems with constraints, Automatica, 47 (2011), 2082-2087. doi: 10.1016/j.automatica.2011.01.023. Google Scholar

[20]

D. P. Tesi, MS Thesis, Ph.D thesis, University of Pavia in Italy, 2009.Google Scholar

[21]

M. Y. Shin, Compution in constrained stochanstic model perdictive control of linear systems, Ph.D dissertation, Stanford University in California, 2011.Google Scholar

[22]

M. FarinaL. Giulioni and R. Scattolini, Stochastic linear Model Predictive Control with chance constraints - A review, J. of Process Control, 44 (2016), 53-67. doi: 10.1016/j.jprocont.2016.03.005. Google Scholar

[23]

D. R. RamírezT. Alamo and E. F. Camacho, Min-Max MPC based on a computationally efficient upper bound of the worst case cost, J. of Process Control, 16 (2006), 511-519. doi: 10.1016/j.jprocont.2005.07.005. Google Scholar

[24]

D. Q. MayneM. M. Seron and S. V. Raković, Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 41 (2005), 219-224. doi: 10.1016/j.automatica.2004.08.019. Google Scholar

[25]

S. QuY. ZhouY. ZhangM. I. M. WahabG. Zhang and Y. Ye, Optimal strategy for a green supply chain considering shipping policy and default risk, Comp. & Indust. Engineering, 131 (2019), 172-186. doi: 10.1016/j.cie.2019.03.042. Google Scholar

[26]

Z. H. GongC. Y. LiuK. L. Teo and J. Sun, Distributionally robust parameter identification of a time-delay dynamical system with stochastic measurements, Appl. Math. Modelling, 69 (2019), 685-695. doi: 10.1016/j.apm.2018.09.040. Google Scholar

[27]

Z. H. GongC. Y. LiuJ. Sun and K. L. Teo, Distributional robust $L_1$-estimation in multiple linear regression, Optim. Letters, 13 (2019), 935-947. doi: 10.1007/s11590-018-1299-x. Google Scholar

[28]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Trans. on Wireless Comms., 16 (2017), 464-474. doi: 10.1109/TWC.2016.2625246. Google Scholar

[29]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109. doi: 10.1109/LSP.2017.2773601. Google Scholar

[30]

B. LiQ. XunJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Appl. Math. Modelling, 58 (2018), 86-97. doi: 10.1016/j.apm.2017.11.039. Google Scholar

[31]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, J. of Indust. and Mgmt. Optim., 15 (2019), 387-400. Google Scholar

[32]

Y. F. Sun, G. Aw, B. Li, K. L. Teo and J. Sun., CVaR-based robust models for portfolio selection. Journal of Industrial and Management Optimization, 2018. doi: 10.3934/jimo.2019032. Google Scholar

[33]

B. Li, J. Sun, K. L. Teo, C. J. Yu and M. Zhang, A distributionally robust approach to a class of three-stage stochastic linear programs. Pacific J. of Optim., 15 (2019), 219-236.Google Scholar

show all references

References:
[1]

L. MagniG. D. Nicolao and R. Scattolini, Robust model predictive control for nonlinear discrete-time systems, Int. J. of Robust & Nonlinear Control, 13 (2003), 229-246. doi: 10.1002/rnc.815. Google Scholar

[2]

D. M. Raimondo, D. Limon and M. Lazar, Min-max model predictive control of nonlinear systems: A unifying overview on stability, European J. of Control, 15 (2009), 5-21. doi: 10.3166/ejc.15.5-21. Google Scholar

[3]

G. C. Calafiore and L. Fagiano, Robust model predictive control via scenario optimization, IEEE Transactions on Automatic Control, 58 (2013), 219-224. doi: 10.1109/TAC.2012.2203054. Google Scholar

[4]

M. CannonB. Kouvaritakis and D. Ng, Probabilistic tubes in linear stochastic model predictive control, Systems & Control Letters, 58 (2009), 747-753. doi: 10.1016/j.sysconle.2009.08.004. Google Scholar

[5]

P. HokayemE. CinquemaniD. ChatterjeeF. Ramponi and J. Lygeros, Stochastic receding horizon control with output feedback and bounded controls, Automatica, 48 (2012), 77-88. doi: 10.1016/j.automatica.2011.09.048. Google Scholar

[6]

P. HokayemD. Chatterjee and J. Lygeros, On stochastic receding horizon control with bounded control inputs: A vector space approach, IEE Trans. on Automat. Control, 56 (2011), 2704-2710. doi: 10.1109/TAC.2011.2159422. Google Scholar

[7]

M. Farina and R. Scattolini, Model predictive control of linear systems with multiplicative unbounded uncertainty and chance constraints, Automatica, 70 (2016), 258-265. doi: 10.1016/j.automatica.2016.04.008. Google Scholar

[8]

M. FarinaL. GiulioniL. Magni and R. Scattolini, An approach to output-feedback MPC of stochastic linear discrete-time systems, Automatica, 55 (2015), 140-149. doi: 10.1016/j.automatica.2015.02.039. Google Scholar

[9]

J. A. Paulson, E. A. Buehler, R. D. Braatz and A. Mesbah, Stochastic model predictive control with joint chance constraints, Int. J. of Control, (2017), 1–14. doi: 10.1080/00207179.2017.1323351. Google Scholar

[10]

G. Schildbach, P. Goulart and M. Morari, Linear controller design for chance constrained systems, Automatica, 51 (2015), 278-284. doi: 10.1016/j.automatica.2014.10.096. Google Scholar

[11]

M. Grantand and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, (2014). Retrieved from: http://cvxr.com/cvx.Google Scholar

[12]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. on Optim., 17 (2006), 969-996. doi: 10.1137/050622328. Google Scholar

[13]

A. Bental and M. Teboulle, Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming. Mgmt. Science, (2011).Google Scholar

[14]

D. Bernardini and A. Bemporad, Scenario-based model predictive control of stochastic constrained linear systems, IEEE Conference on Decision & Control, IEEE, (2009). doi: 10.1109/CDC.2009.5399917. Google Scholar

[15]

M. S. LoboL. VandenbergheS. Boyd and H. Lebret, Applications of second-order cone programming, Linear Algebra and its Appl., 284 (1998), 193-228. doi: 10.1016/S0024-3795(98)10032-0. Google Scholar

[16]

M. Farina, L. Giulioni and L. Magni, A probabilistic approach to model predictive control, in 52nd IEEE Conference on Decision and Control, IEEE, (2013). doi: 10.1109/CDC.2013.6761117. Google Scholar

[17]

D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814. doi: 10.1016/S0005-1098(99)00214-9. Google Scholar

[18]

W. ChenM. SimJ. Sun and C.-P. Teo, From CVaR to uncertainty set: Implications in joint chance-constrained optimization, Ops. Research, 58 (2010), 470-485. doi: 10.1287/opre.1090.0712. Google Scholar

[19]

E. CinquemaniM. AgarwalD. Chatterjee and J. Lygeros, Convexity and convex approximations of discrete-time stochastic control problems with constraints, Automatica, 47 (2011), 2082-2087. doi: 10.1016/j.automatica.2011.01.023. Google Scholar

[20]

D. P. Tesi, MS Thesis, Ph.D thesis, University of Pavia in Italy, 2009.Google Scholar

[21]

M. Y. Shin, Compution in constrained stochanstic model perdictive control of linear systems, Ph.D dissertation, Stanford University in California, 2011.Google Scholar

[22]

M. FarinaL. Giulioni and R. Scattolini, Stochastic linear Model Predictive Control with chance constraints - A review, J. of Process Control, 44 (2016), 53-67. doi: 10.1016/j.jprocont.2016.03.005. Google Scholar

[23]

D. R. RamírezT. Alamo and E. F. Camacho, Min-Max MPC based on a computationally efficient upper bound of the worst case cost, J. of Process Control, 16 (2006), 511-519. doi: 10.1016/j.jprocont.2005.07.005. Google Scholar

[24]

D. Q. MayneM. M. Seron and S. V. Raković, Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 41 (2005), 219-224. doi: 10.1016/j.automatica.2004.08.019. Google Scholar

[25]

S. QuY. ZhouY. ZhangM. I. M. WahabG. Zhang and Y. Ye, Optimal strategy for a green supply chain considering shipping policy and default risk, Comp. & Indust. Engineering, 131 (2019), 172-186. doi: 10.1016/j.cie.2019.03.042. Google Scholar

[26]

Z. H. GongC. Y. LiuK. L. Teo and J. Sun, Distributionally robust parameter identification of a time-delay dynamical system with stochastic measurements, Appl. Math. Modelling, 69 (2019), 685-695. doi: 10.1016/j.apm.2018.09.040. Google Scholar

[27]

Z. H. GongC. Y. LiuJ. Sun and K. L. Teo, Distributional robust $L_1$-estimation in multiple linear regression, Optim. Letters, 13 (2019), 935-947. doi: 10.1007/s11590-018-1299-x. Google Scholar

[28]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Trans. on Wireless Comms., 16 (2017), 464-474. doi: 10.1109/TWC.2016.2625246. Google Scholar

[29]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109. doi: 10.1109/LSP.2017.2773601. Google Scholar

[30]

B. LiQ. XunJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Appl. Math. Modelling, 58 (2018), 86-97. doi: 10.1016/j.apm.2017.11.039. Google Scholar

[31]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, J. of Indust. and Mgmt. Optim., 15 (2019), 387-400. Google Scholar

[32]

Y. F. Sun, G. Aw, B. Li, K. L. Teo and J. Sun., CVaR-based robust models for portfolio selection. Journal of Industrial and Management Optimization, 2018. doi: 10.3934/jimo.2019032. Google Scholar

[33]

B. Li, J. Sun, K. L. Teo, C. J. Yu and M. Zhang, A distributionally robust approach to a class of three-stage stochastic linear programs. Pacific J. of Optim., 15 (2019), 219-236.Google Scholar

Figure 1.  Optimal trajectories from (-5, 3) to (0, 0)
Figure 2.  Violated results of 100,000 sample trajectories
Figure 3.  100 sample trajectories of SMPC implementation
Figure 4.  Simulation results of the proposed algorithm 2 with different violation probabilities
Figure 5.  Simulation results of the proposed algorithm and RMPC
[1]

Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6209-6238. doi: 10.3934/dcdsb.2019136

[2]

Gregory Zitelli, Seddik M. Djouadi, Judy D. Day. Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1127-1139. doi: 10.3934/mbe.2015.12.1127

[3]

Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter. Distributed model predictive control of irrigation canals. Networks & Heterogeneous Media, 2009, 4 (2) : 359-380. doi: 10.3934/nhm.2009.4.359

[4]

Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3905-3928. doi: 10.3934/dcdsb.2018336

[5]

João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptive model predictive control of an irrigation channel. Networks & Heterogeneous Media, 2009, 4 (2) : 303-324. doi: 10.3934/nhm.2009.4.303

[6]

Ke-Wei Ding, Nan-Jing Huang, Yi-Bin Xiao. Distributionally robust chance constrained problems under general moments information. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019087

[7]

Judy Day, Jonathan Rubin, Gilles Clermont. Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation. Mathematical Biosciences & Engineering, 2010, 7 (4) : 739-763. doi: 10.3934/mbe.2010.7.739

[8]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Sampled–data model predictive control: Adaptive time–mesh refinement algorithms and guarantees of stability. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2335-2364. doi: 10.3934/dcdsb.2019098

[9]

T. Tachim Medjo. Robust control of a Cahn-Hilliard-Navier-Stokes model. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2075-2101. doi: 10.3934/cpaa.2016028

[10]

Pasquale Palumbo, Pierdomenico Pepe, Simona Panunzi, Andrea De Gaetano. Robust closed-loop control of plasma glycemia: A discrete-delay model approach. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 455-468. doi: 10.3934/dcdsb.2009.12.455

[11]

T. Tachim Medjo, Louis Tcheugoue Tebou. Robust control problems in fluid flows. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 437-463. doi: 10.3934/dcds.2005.12.437

[12]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[13]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[14]

Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control & Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014

[15]

Jun Wu, Shouyang Wang, Wuyi Yue. Supply contract model with service level constraint. Journal of Industrial & Management Optimization, 2005, 1 (3) : 275-287. doi: 10.3934/jimo.2005.1.275

[16]

Takeshi Fukao, Nobuyuki Kenmochi. A thermohydraulics model with temperature dependent constraint on velocity fields. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 17-34. doi: 10.3934/dcdss.2014.7.17

[17]

Akio Ito, Nobuyuki Kenmochi, Noriaki Yamazaki. Global solvability of a model for grain boundary motion with constraint. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 127-146. doi: 10.3934/dcdss.2012.5.127

[18]

T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201

[19]

T. Tachim Medjo. Robust control problems for primitive equations of the ocean. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 769-788. doi: 10.3934/dcdsb.2011.15.769

[20]

Magdi S. Mahmoud, Omar Al-Buraiki. Robust control design of autonomous bicycle kinematics. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 181-191. doi: 10.3934/naco.2014.4.181

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (17)
  • HTML views (113)
  • Cited by (0)

Other articles
by authors

[Back to Top]