• Previous Article
    Orthogonal intrinsic mode functions via optimization approach
  • JIMO Home
  • This Issue
  • Next Article
    Optimal maximally decimated M-channel mirrored paraunitary linear phase FIR filter bank design via norm relaxed sequential quadratic programming
doi: 10.3934/jimo.2019099

A chance-constrained stochastic model predictive control problem with disturbance feedback

1. 

College of Electrical and Information Technology, Sichuan University, Chengdu, China

2. 

Business School, The University of Edinburgh, Edinburgh, UK

3. 

School of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China

4. 

Inovation and Entrepreneurship College, Xihua University, Chengdu, China

5. 

College of Electrical and Information Technology, Sichuan University, Chengdu, China

* Corresponding author: Tianshi Hu

Received  February 2019 Revised  March 2019 Published  July 2019

Fund Project: This work was partially supported by a grant from National Natural Science Foundation of China under number 61701124, a grant from Science and Technology on Space Intelligent Control Laboratory, No. KGJZDSYS-2018-03, a grant from Sichuan Province Government under the application number 2019YJ0105, and a grant from Fundamental Research Funds for the Central Universities (China).

In this paper, we develop two algorithms for stochastic model predictive control (SMPC) problems with discrete linear systems. Participially, chance constraints on the state and control are considered. Different from the state-of-the-art robust model predictive control (RMPC) algorithm, the proposed is less conservative. Meanwhile, the proposed algorithms do not assume the full knowledge of the disturbance distribution. It only requires the mean and variance of the disturbance. Rigorous computational analysis is carried out for the proposed algorithms. Numerical results are provided to demonstrate the effectiveness and the superior of the proposed SMPC algorithms.

Citation: Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019099
References:
[1]

L. MagniG. D. Nicolao and R. Scattolini, Robust model predictive control for nonlinear discrete-time systems, Int. J. of Robust & Nonlinear Control, 13 (2003), 229-246.  doi: 10.1002/rnc.815.  Google Scholar

[2]

D. M. Raimondo, D. Limon and M. Lazar, Min-max model predictive control of nonlinear systems: A unifying overview on stability, European J. of Control, 15 (2009), 5-21. doi: 10.3166/ejc.15.5-21.  Google Scholar

[3]

G. C. Calafiore and L. Fagiano, Robust model predictive control via scenario optimization, IEEE Transactions on Automatic Control, 58 (2013), 219-224. doi: 10.1109/TAC.2012.2203054.  Google Scholar

[4]

M. CannonB. Kouvaritakis and D. Ng, Probabilistic tubes in linear stochastic model predictive control, Systems & Control Letters, 58 (2009), 747-753.  doi: 10.1016/j.sysconle.2009.08.004.  Google Scholar

[5]

P. HokayemE. CinquemaniD. ChatterjeeF. Ramponi and J. Lygeros, Stochastic receding horizon control with output feedback and bounded controls, Automatica, 48 (2012), 77-88.  doi: 10.1016/j.automatica.2011.09.048.  Google Scholar

[6]

P. HokayemD. Chatterjee and J. Lygeros, On stochastic receding horizon control with bounded control inputs: A vector space approach, IEE Trans. on Automat. Control, 56 (2011), 2704-2710.  doi: 10.1109/TAC.2011.2159422.  Google Scholar

[7]

M. Farina and R. Scattolini, Model predictive control of linear systems with multiplicative unbounded uncertainty and chance constraints, Automatica, 70 (2016), 258-265.  doi: 10.1016/j.automatica.2016.04.008.  Google Scholar

[8]

M. FarinaL. GiulioniL. Magni and R. Scattolini, An approach to output-feedback MPC of stochastic linear discrete-time systems, Automatica, 55 (2015), 140-149.  doi: 10.1016/j.automatica.2015.02.039.  Google Scholar

[9]

J. A. Paulson, E. A. Buehler, R. D. Braatz and A. Mesbah, Stochastic model predictive control with joint chance constraints, Int. J. of Control, (2017), 1–14. doi: 10.1080/00207179.2017.1323351.  Google Scholar

[10]

G. Schildbach, P. Goulart and M. Morari, Linear controller design for chance constrained systems, Automatica, 51 (2015), 278-284. doi: 10.1016/j.automatica.2014.10.096.  Google Scholar

[11]

M. Grantand and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, (2014). Retrieved from: http://cvxr.com/cvx. Google Scholar

[12]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. on Optim., 17 (2006), 969-996.  doi: 10.1137/050622328.  Google Scholar

[13]

A. Bental and M. Teboulle, Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming. Mgmt. Science, (2011). Google Scholar

[14]

D. Bernardini and A. Bemporad, Scenario-based model predictive control of stochastic constrained linear systems, IEEE Conference on Decision & Control, IEEE, (2009). doi: 10.1109/CDC.2009.5399917.  Google Scholar

[15]

M. S. LoboL. VandenbergheS. Boyd and H. Lebret, Applications of second-order cone programming, Linear Algebra and its Appl., 284 (1998), 193-228.  doi: 10.1016/S0024-3795(98)10032-0.  Google Scholar

[16]

M. Farina, L. Giulioni and L. Magni, A probabilistic approach to model predictive control, in 52nd IEEE Conference on Decision and Control, IEEE, (2013). doi: 10.1109/CDC.2013.6761117.  Google Scholar

[17]

D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814. doi: 10.1016/S0005-1098(99)00214-9.  Google Scholar

[18]

W. ChenM. SimJ. Sun and C.-P. Teo, From CVaR to uncertainty set: Implications in joint chance-constrained optimization, Ops. Research, 58 (2010), 470-485.  doi: 10.1287/opre.1090.0712.  Google Scholar

[19]

E. CinquemaniM. AgarwalD. Chatterjee and J. Lygeros, Convexity and convex approximations of discrete-time stochastic control problems with constraints, Automatica, 47 (2011), 2082-2087.  doi: 10.1016/j.automatica.2011.01.023.  Google Scholar

[20]

D. P. Tesi, MS Thesis, Ph.D thesis, University of Pavia in Italy, 2009. Google Scholar

[21]

M. Y. Shin, Compution in constrained stochanstic model perdictive control of linear systems, Ph.D dissertation, Stanford University in California, 2011. Google Scholar

[22]

M. FarinaL. Giulioni and R. Scattolini, Stochastic linear Model Predictive Control with chance constraints - A review, J. of Process Control, 44 (2016), 53-67.  doi: 10.1016/j.jprocont.2016.03.005.  Google Scholar

[23]

D. R. RamírezT. Alamo and E. F. Camacho, Min-Max MPC based on a computationally efficient upper bound of the worst case cost, J. of Process Control, 16 (2006), 511-519.  doi: 10.1016/j.jprocont.2005.07.005.  Google Scholar

[24]

D. Q. MayneM. M. Seron and S. V. Raković, Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 41 (2005), 219-224.  doi: 10.1016/j.automatica.2004.08.019.  Google Scholar

[25]

S. QuY. ZhouY. ZhangM. I. M. WahabG. Zhang and Y. Ye, Optimal strategy for a green supply chain considering shipping policy and default risk, Comp. & Indust. Engineering, 131 (2019), 172-186.  doi: 10.1016/j.cie.2019.03.042.  Google Scholar

[26]

Z. H. GongC. Y. LiuK. L. Teo and J. Sun, Distributionally robust parameter identification of a time-delay dynamical system with stochastic measurements, Appl. Math. Modelling, 69 (2019), 685-695.  doi: 10.1016/j.apm.2018.09.040.  Google Scholar

[27]

Z. H. GongC. Y. LiuJ. Sun and K. L. Teo, Distributional robust $L_1$-estimation in multiple linear regression, Optim. Letters, 13 (2019), 935-947.  doi: 10.1007/s11590-018-1299-x.  Google Scholar

[28]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Trans. on Wireless Comms., 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.  Google Scholar

[29]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109.  doi: 10.1109/LSP.2017.2773601.  Google Scholar

[30]

B. LiQ. XunJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Appl. Math. Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[31]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, J. of Indust. and Mgmt. Optim., 15 (2019), 387-400.   Google Scholar

[32]

Y. F. Sun, G. Aw, B. Li, K. L. Teo and J. Sun., CVaR-based robust models for portfolio selection. Journal of Industrial and Management Optimization, 2018. doi: 10.3934/jimo.2019032.  Google Scholar

[33]

B. Li, J. Sun, K. L. Teo, C. J. Yu and M. Zhang, A distributionally robust approach to a class of three-stage stochastic linear programs. Pacific J. of Optim., 15 (2019), 219-236. Google Scholar

show all references

References:
[1]

L. MagniG. D. Nicolao and R. Scattolini, Robust model predictive control for nonlinear discrete-time systems, Int. J. of Robust & Nonlinear Control, 13 (2003), 229-246.  doi: 10.1002/rnc.815.  Google Scholar

[2]

D. M. Raimondo, D. Limon and M. Lazar, Min-max model predictive control of nonlinear systems: A unifying overview on stability, European J. of Control, 15 (2009), 5-21. doi: 10.3166/ejc.15.5-21.  Google Scholar

[3]

G. C. Calafiore and L. Fagiano, Robust model predictive control via scenario optimization, IEEE Transactions on Automatic Control, 58 (2013), 219-224. doi: 10.1109/TAC.2012.2203054.  Google Scholar

[4]

M. CannonB. Kouvaritakis and D. Ng, Probabilistic tubes in linear stochastic model predictive control, Systems & Control Letters, 58 (2009), 747-753.  doi: 10.1016/j.sysconle.2009.08.004.  Google Scholar

[5]

P. HokayemE. CinquemaniD. ChatterjeeF. Ramponi and J. Lygeros, Stochastic receding horizon control with output feedback and bounded controls, Automatica, 48 (2012), 77-88.  doi: 10.1016/j.automatica.2011.09.048.  Google Scholar

[6]

P. HokayemD. Chatterjee and J. Lygeros, On stochastic receding horizon control with bounded control inputs: A vector space approach, IEE Trans. on Automat. Control, 56 (2011), 2704-2710.  doi: 10.1109/TAC.2011.2159422.  Google Scholar

[7]

M. Farina and R. Scattolini, Model predictive control of linear systems with multiplicative unbounded uncertainty and chance constraints, Automatica, 70 (2016), 258-265.  doi: 10.1016/j.automatica.2016.04.008.  Google Scholar

[8]

M. FarinaL. GiulioniL. Magni and R. Scattolini, An approach to output-feedback MPC of stochastic linear discrete-time systems, Automatica, 55 (2015), 140-149.  doi: 10.1016/j.automatica.2015.02.039.  Google Scholar

[9]

J. A. Paulson, E. A. Buehler, R. D. Braatz and A. Mesbah, Stochastic model predictive control with joint chance constraints, Int. J. of Control, (2017), 1–14. doi: 10.1080/00207179.2017.1323351.  Google Scholar

[10]

G. Schildbach, P. Goulart and M. Morari, Linear controller design for chance constrained systems, Automatica, 51 (2015), 278-284. doi: 10.1016/j.automatica.2014.10.096.  Google Scholar

[11]

M. Grantand and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.1, (2014). Retrieved from: http://cvxr.com/cvx. Google Scholar

[12]

A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. on Optim., 17 (2006), 969-996.  doi: 10.1137/050622328.  Google Scholar

[13]

A. Bental and M. Teboulle, Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming. Mgmt. Science, (2011). Google Scholar

[14]

D. Bernardini and A. Bemporad, Scenario-based model predictive control of stochastic constrained linear systems, IEEE Conference on Decision & Control, IEEE, (2009). doi: 10.1109/CDC.2009.5399917.  Google Scholar

[15]

M. S. LoboL. VandenbergheS. Boyd and H. Lebret, Applications of second-order cone programming, Linear Algebra and its Appl., 284 (1998), 193-228.  doi: 10.1016/S0024-3795(98)10032-0.  Google Scholar

[16]

M. Farina, L. Giulioni and L. Magni, A probabilistic approach to model predictive control, in 52nd IEEE Conference on Decision and Control, IEEE, (2013). doi: 10.1109/CDC.2013.6761117.  Google Scholar

[17]

D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36 (2000), 789-814. doi: 10.1016/S0005-1098(99)00214-9.  Google Scholar

[18]

W. ChenM. SimJ. Sun and C.-P. Teo, From CVaR to uncertainty set: Implications in joint chance-constrained optimization, Ops. Research, 58 (2010), 470-485.  doi: 10.1287/opre.1090.0712.  Google Scholar

[19]

E. CinquemaniM. AgarwalD. Chatterjee and J. Lygeros, Convexity and convex approximations of discrete-time stochastic control problems with constraints, Automatica, 47 (2011), 2082-2087.  doi: 10.1016/j.automatica.2011.01.023.  Google Scholar

[20]

D. P. Tesi, MS Thesis, Ph.D thesis, University of Pavia in Italy, 2009. Google Scholar

[21]

M. Y. Shin, Compution in constrained stochanstic model perdictive control of linear systems, Ph.D dissertation, Stanford University in California, 2011. Google Scholar

[22]

M. FarinaL. Giulioni and R. Scattolini, Stochastic linear Model Predictive Control with chance constraints - A review, J. of Process Control, 44 (2016), 53-67.  doi: 10.1016/j.jprocont.2016.03.005.  Google Scholar

[23]

D. R. RamírezT. Alamo and E. F. Camacho, Min-Max MPC based on a computationally efficient upper bound of the worst case cost, J. of Process Control, 16 (2006), 511-519.  doi: 10.1016/j.jprocont.2005.07.005.  Google Scholar

[24]

D. Q. MayneM. M. Seron and S. V. Raković, Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 41 (2005), 219-224.  doi: 10.1016/j.automatica.2004.08.019.  Google Scholar

[25]

S. QuY. ZhouY. ZhangM. I. M. WahabG. Zhang and Y. Ye, Optimal strategy for a green supply chain considering shipping policy and default risk, Comp. & Indust. Engineering, 131 (2019), 172-186.  doi: 10.1016/j.cie.2019.03.042.  Google Scholar

[26]

Z. H. GongC. Y. LiuK. L. Teo and J. Sun, Distributionally robust parameter identification of a time-delay dynamical system with stochastic measurements, Appl. Math. Modelling, 69 (2019), 685-695.  doi: 10.1016/j.apm.2018.09.040.  Google Scholar

[27]

Z. H. GongC. Y. LiuJ. Sun and K. L. Teo, Distributional robust $L_1$-estimation in multiple linear regression, Optim. Letters, 13 (2019), 935-947.  doi: 10.1007/s11590-018-1299-x.  Google Scholar

[28]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Trans. on Wireless Comms., 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.  Google Scholar

[29]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust minimum variance beamformer design, IEEE Signal Processing Letters, 25 (2018), 105-109.  doi: 10.1109/LSP.2017.2773601.  Google Scholar

[30]

B. LiQ. XunJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Appl. Math. Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[31]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, J. of Indust. and Mgmt. Optim., 15 (2019), 387-400.   Google Scholar

[32]

Y. F. Sun, G. Aw, B. Li, K. L. Teo and J. Sun., CVaR-based robust models for portfolio selection. Journal of Industrial and Management Optimization, 2018. doi: 10.3934/jimo.2019032.  Google Scholar

[33]

B. Li, J. Sun, K. L. Teo, C. J. Yu and M. Zhang, A distributionally robust approach to a class of three-stage stochastic linear programs. Pacific J. of Optim., 15 (2019), 219-236. Google Scholar

Figure 1.  Optimal trajectories from (-5, 3) to (0, 0)
Figure 2.  Violated results of 100,000 sample trajectories
Figure 3.  100 sample trajectories of SMPC implementation
Figure 4.  Simulation results of the proposed algorithm 2 with different violation probabilities
Figure 5.  Simulation results of the proposed algorithm and RMPC
[1]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[2]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[3]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[4]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[5]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[6]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[7]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[8]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[9]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[10]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[11]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[12]

Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[13]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[14]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[17]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[18]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[19]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[20]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]