[1]
|
L. Adamopoulos, Cluster models for earthquakes: Regional comparisons, J. of the Internat. Assoc. for Math. Geology, 8 (1976), 463-475.
doi: 10.1007/BF01028982.
|
[2]
|
Y. Aït-Sahalia, J. Cacho-Diaz and R. J. Laeven, Modeling financial contagion using mutually exciting jump processes, J. Financial Economics, 117 (2015), 585-606.
doi: 10.1016/j.jfineco.2015.03.002.
|
[3]
|
G. Bakshi, C. Cao and Z. Chen, Empirical performance of alternative option pricing models, The Journal of Finance, 52 (1997), 2003-2049.
doi: 10.1111/j.1540-6261.1997.tb02749.x.
|
[4]
|
D. S. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options, The Review of Financial Studies, 9 (1996), 69-107.
doi: 10.1093/rfs/9.1.69.
|
[5]
|
D. S. Bates, Post-'87 crash fears in the S & P 500 futures option market, J. Econometrics, 94 (2000), 181-238.
doi: 10.1016/S0304-4076(99)00021-4.
|
[6]
|
L. P. Blenman and S. P. Clark, Power exchange options, Finance Research Letters, 2 (2005), 97-106.
doi: 10.1016/j.frl.2005.01.003.
|
[7]
|
N. Cai and S. G. Kou, Option pricing under a mixed-exponential jump diffusion model, Management Science, 57 (2011), 2067-2081.
doi: 10.1287/mnsc.1110.1393.
|
[8]
|
P. Carr and L. Wu, Time-changed lévy processes and option pricing, J. Financial Economics, 71 (2004), 113-141.
doi: 10.1016/0304-405X(79)90015-1.
|
[9]
|
A. Dassios and H. Zhao, A dynamic contagion process, Adv. in Appl. Probab., 43 (2011), 814-846.
doi: 10.1239/aap/1316792671.
|
[10]
|
B. Eraker, Do stock prices and volatility jump? Reconciling evidence from spot and option prices, J. Finance, 59 (2004), 1367-1403.
doi: 10.1111/j.1540-6261.2004.00666.x.
|
[11]
|
B. Eraker, M. Johannes and N. Polson, The impact of jumps in volatility and returns, J. Finance, 58 (2003), 1269-1300.
doi: 10.1111/1540-6261.00566.
|
[12]
|
E. Errais, K. Giesecke and L. R. Goldberg, Affine point processes and portfolio credit risk, SIAM J. Financial Math., 1 (2010), 642-665.
doi: 10.1137/090771272.
|
[13]
|
S. Fischer, Call option pricing when the exercise price is uncertain, and the valuation of index bonds, J. Finance, 33 (1978), 169-176.
doi: 10.1111/j.1540-6261.1978.tb03396.x.
|
[14]
|
A. G. Hawkes, Point spectra of some mutually exciting point processes, J. Roy. Statist. Soc. Ser. B, 33 (1971), 438-443.
doi: 10.1111/j.2517-6161.1971.tb01530.x.
|
[15]
|
A. G. Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika, 58 (1971), 83-90.
doi: 10.1093/biomet/58.1.83.
|
[16]
|
A. G. Hawkes, Hawkes processes and their applications to finance: A review, Quant. Finance, 18 (2018), 193-198.
doi: 10.1080/14697688.2017.1403131.
|
[17]
|
S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.
doi: 10.1287/mnsc.48.8.1086.166.
|
[18]
|
W. Liu and S.-P. Zhu, Pricing variance swaps under the Hawkes jump-diffusion process, J. Futures Markets, 39 (2019).
doi: 10.1002/fut.21997.
|
[19]
|
T. Lux and M. Marchesi, Volatility clustering in financial markets: A microsimulation of interacting agents, Int. J. Theor. Appl. Finance, 3 (2000), 675-702.
doi: 10.1142/S0219024900000826.
|
[20]
|
Y. Ma, K. Shrestha and W. Xu, Pricing vulnerable options with jump clustering, J. Futures Markets, 37 (2017), 1155-1178.
doi: 10.1002/fut.21843.
|
[21]
|
Y. Ma and W. Xu, Structural credit risk modelling with Hawkes jump diffusion processes, J. Comput. Appl. Math., 303 (2016), 69-80.
doi: 10.1016/j.cam.2016.02.032.
|
[22]
|
J. M. Maheu and T. H. McCurdy, News arrival, jump dynamics, and volatility components for individual stock returns, J. Finance, 59 (2004), 755-793.
doi: 10.1111/j.1540-6261.2004.00648.x.
|
[23]
|
B. Mandelbrot, The variation of certain speculative prices, J. Business, 36 (1963), 394-419.
doi: 10.1086/294632.
|
[24]
|
W. Margrabe, The value of an option to exchange one asset for another, J. Finance, 33 (1978), 177-186.
doi: 10.1111/j.1540-6261.1978.tb03397.x.
|
[25]
|
S. Meyer, J. Elias and M. Höhle, A space–time conditional intensity model for invasive meningococcal disease occurrence, Biometrics, 68 (2012), 607-616.
doi: 10.1111/j.1541-0420.2011.01684.x.
|
[26]
|
Y. Ogata, On Lewis' simulation method for point processes, IEEE Transactions on Information Theory, 27 (1981), 23-31.
doi: 10.1109/TIT.1981.1056305.
|
[27]
|
Y. Ogata, Statistical models for earthquake occurrences and residual analysis for point processes, J. Amer. Statistical Association, 83 (1988), 9-27.
doi: 10.1080/01621459.1988.10478560.
|
[28]
|
J. Pan, The jump-risk premia implicit in options: Evidence from an integrated time-series study, J. of Financial Economics, 63 (2002), 3-50.
doi: 10.1016/S0304-405X(01)00088-5.
|
[29]
|
P. Pasricha and A. Goel, Pricing vulnerable power exchange options in an intensity based framework, J. Comput. Appl. Math., 355 (2019), 106-115.
doi: 10.1016/j.cam.2019.01.019.
|
[30]
|
A. Reinhart, A review of self-exciting spatio-temporal point processes and their applications, Statist. Sci., 33 (2018), 330-333.
doi: 10.1214/18-STS654.
|
[31]
|
R. Tompkins, Power options: hedging nonlinear risks, J. Risk, 2 (2000), 29-45.
doi: 10.21314/JOR.2000.022.
|
[32]
|
X. Wang, Pricing power exchange options with correlated jump risk, Finance Research Letters, 19 (2016), 90-97.
doi: 10.1016/j.frl.2016.06.009.
|
[33]
|
X. Wang, S. Song and Y. Wang, The valuation of power exchange options with counterparty risk and jump risk, J. Futures Markets, 37 (2017), 499-521.
doi: 10.1002/fut.21803.
|
[34]
|
J. Yu, Empirical characteristic function estimation and its applications, Econometric Rev., 23 (2004), 93-123.
doi: 10.1081/ETC-120039605.
|