
-
Previous Article
A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem
- JIMO Home
- This Issue
-
Next Article
Biobjective optimization over the efficient set of multiobjective integer programming problem
Pricing power exchange options with hawkes jump diffusion processes
Department of Mathematics, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India |
In this article, we propose a jump diffusion framework to price the power exchange options. We model the price dynamics of assets using a Hawkes jump diffusion model with common factors to describe the correlated jump risk and clustering of asset price jumps. In the proposed model, the jumps, reflecting common systematic risk and idiosyncratic risk, are modeled by self-exciting Hawkes process with exponential decay. A pricing formula for valuation of power exchange option is obtained following the measure-change technique. Existing models in the literature are shown to be special cases of the proposed model. Finally, sensitivity analysis is given to illustrate the effect of jump risk and jump clustering on option prices. We observe that jump clustering significantly effects the option prices.
References:
[1] |
L. Adamopoulos,
Cluster models for earthquakes: Regional comparisons, J. of the Internat. Assoc. for Math. Geology, 8 (1976), 463-475.
doi: 10.1007/BF01028982. |
[2] |
Y. Aït-Sahalia, J. Cacho-Diaz and R. J. Laeven,
Modeling financial contagion using mutually exciting jump processes, J. Financial Economics, 117 (2015), 585-606.
doi: 10.1016/j.jfineco.2015.03.002. |
[3] |
G. Bakshi, C. Cao and Z. Chen,
Empirical performance of alternative option pricing models, The Journal of Finance, 52 (1997), 2003-2049.
doi: 10.1111/j.1540-6261.1997.tb02749.x. |
[4] |
D. S. Bates,
Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options, The Review of Financial Studies, 9 (1996), 69-107.
doi: 10.1093/rfs/9.1.69. |
[5] |
D. S. Bates,
Post-'87 crash fears in the S & P 500 futures option market, J. Econometrics, 94 (2000), 181-238.
doi: 10.1016/S0304-4076(99)00021-4. |
[6] |
L. P. Blenman and S. P. Clark,
Power exchange options, Finance Research Letters, 2 (2005), 97-106.
doi: 10.1016/j.frl.2005.01.003. |
[7] |
N. Cai and S. G. Kou,
Option pricing under a mixed-exponential jump diffusion model, Management Science, 57 (2011), 2067-2081.
doi: 10.1287/mnsc.1110.1393. |
[8] |
P. Carr and L. Wu,
Time-changed lévy processes and option pricing, J. Financial Economics, 71 (2004), 113-141.
doi: 10.1016/0304-405X(79)90015-1. |
[9] |
A. Dassios and H. Zhao,
A dynamic contagion process, Adv. in Appl. Probab., 43 (2011), 814-846.
doi: 10.1239/aap/1316792671. |
[10] |
B. Eraker,
Do stock prices and volatility jump? Reconciling evidence from spot and option prices, J. Finance, 59 (2004), 1367-1403.
doi: 10.1111/j.1540-6261.2004.00666.x. |
[11] |
B. Eraker, M. Johannes and N. Polson,
The impact of jumps in volatility and returns, J. Finance, 58 (2003), 1269-1300.
doi: 10.1111/1540-6261.00566. |
[12] |
E. Errais, K. Giesecke and L. R. Goldberg,
Affine point processes and portfolio credit risk, SIAM J. Financial Math., 1 (2010), 642-665.
doi: 10.1137/090771272. |
[13] |
S. Fischer,
Call option pricing when the exercise price is uncertain, and the valuation of index bonds, J. Finance, 33 (1978), 169-176.
doi: 10.1111/j.1540-6261.1978.tb03396.x. |
[14] |
A. G. Hawkes,
Point spectra of some mutually exciting point processes, J. Roy. Statist. Soc. Ser. B, 33 (1971), 438-443.
doi: 10.1111/j.2517-6161.1971.tb01530.x. |
[15] |
A. G. Hawkes,
Spectra of some self-exciting and mutually exciting point processes, Biometrika, 58 (1971), 83-90.
doi: 10.1093/biomet/58.1.83. |
[16] |
A. G. Hawkes,
Hawkes processes and their applications to finance: A review, Quant. Finance, 18 (2018), 193-198.
doi: 10.1080/14697688.2017.1403131. |
[17] |
S. G. Kou,
A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.
doi: 10.1287/mnsc.48.8.1086.166. |
[18] |
W. Liu and S.-P. Zhu, Pricing variance swaps under the Hawkes jump-diffusion process, J. Futures Markets, 39 (2019).
doi: 10.1002/fut.21997. |
[19] |
T. Lux and M. Marchesi,
Volatility clustering in financial markets: A microsimulation of interacting agents, Int. J. Theor. Appl. Finance, 3 (2000), 675-702.
doi: 10.1142/S0219024900000826. |
[20] |
Y. Ma, K. Shrestha and W. Xu,
Pricing vulnerable options with jump clustering, J. Futures Markets, 37 (2017), 1155-1178.
doi: 10.1002/fut.21843. |
[21] |
Y. Ma and W. Xu,
Structural credit risk modelling with Hawkes jump diffusion processes, J. Comput. Appl. Math., 303 (2016), 69-80.
doi: 10.1016/j.cam.2016.02.032. |
[22] |
J. M. Maheu and T. H. McCurdy,
News arrival, jump dynamics, and volatility components for individual stock returns, J. Finance, 59 (2004), 755-793.
doi: 10.1111/j.1540-6261.2004.00648.x. |
[23] |
B. Mandelbrot,
The variation of certain speculative prices, J. Business, 36 (1963), 394-419.
doi: 10.1086/294632. |
[24] |
W. Margrabe,
The value of an option to exchange one asset for another, J. Finance, 33 (1978), 177-186.
doi: 10.1111/j.1540-6261.1978.tb03397.x. |
[25] |
S. Meyer, J. Elias and M. Höhle,
A space–time conditional intensity model for invasive meningococcal disease occurrence, Biometrics, 68 (2012), 607-616.
doi: 10.1111/j.1541-0420.2011.01684.x. |
[26] |
Y. Ogata,
On Lewis' simulation method for point processes, IEEE Transactions on Information Theory, 27 (1981), 23-31.
doi: 10.1109/TIT.1981.1056305. |
[27] |
Y. Ogata,
Statistical models for earthquake occurrences and residual analysis for point processes, J. Amer. Statistical Association, 83 (1988), 9-27.
doi: 10.1080/01621459.1988.10478560. |
[28] |
J. Pan,
The jump-risk premia implicit in options: Evidence from an integrated time-series study, J. of Financial Economics, 63 (2002), 3-50.
doi: 10.1016/S0304-405X(01)00088-5. |
[29] |
P. Pasricha and A. Goel,
Pricing vulnerable power exchange options in an intensity based framework, J. Comput. Appl. Math., 355 (2019), 106-115.
doi: 10.1016/j.cam.2019.01.019. |
[30] |
A. Reinhart,
A review of self-exciting spatio-temporal point processes and their applications, Statist. Sci., 33 (2018), 330-333.
doi: 10.1214/18-STS654. |
[31] |
R. Tompkins,
Power options: hedging nonlinear risks, J. Risk, 2 (2000), 29-45.
doi: 10.21314/JOR.2000.022. |
[32] |
X. Wang,
Pricing power exchange options with correlated jump risk, Finance Research Letters, 19 (2016), 90-97.
doi: 10.1016/j.frl.2016.06.009. |
[33] |
X. Wang, S. Song and Y. Wang,
The valuation of power exchange options with counterparty risk and jump risk, J. Futures Markets, 37 (2017), 499-521.
doi: 10.1002/fut.21803. |
[34] |
J. Yu,
Empirical characteristic function estimation and its applications, Econometric Rev., 23 (2004), 93-123.
doi: 10.1081/ETC-120039605. |
show all references
References:
[1] |
L. Adamopoulos,
Cluster models for earthquakes: Regional comparisons, J. of the Internat. Assoc. for Math. Geology, 8 (1976), 463-475.
doi: 10.1007/BF01028982. |
[2] |
Y. Aït-Sahalia, J. Cacho-Diaz and R. J. Laeven,
Modeling financial contagion using mutually exciting jump processes, J. Financial Economics, 117 (2015), 585-606.
doi: 10.1016/j.jfineco.2015.03.002. |
[3] |
G. Bakshi, C. Cao and Z. Chen,
Empirical performance of alternative option pricing models, The Journal of Finance, 52 (1997), 2003-2049.
doi: 10.1111/j.1540-6261.1997.tb02749.x. |
[4] |
D. S. Bates,
Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options, The Review of Financial Studies, 9 (1996), 69-107.
doi: 10.1093/rfs/9.1.69. |
[5] |
D. S. Bates,
Post-'87 crash fears in the S & P 500 futures option market, J. Econometrics, 94 (2000), 181-238.
doi: 10.1016/S0304-4076(99)00021-4. |
[6] |
L. P. Blenman and S. P. Clark,
Power exchange options, Finance Research Letters, 2 (2005), 97-106.
doi: 10.1016/j.frl.2005.01.003. |
[7] |
N. Cai and S. G. Kou,
Option pricing under a mixed-exponential jump diffusion model, Management Science, 57 (2011), 2067-2081.
doi: 10.1287/mnsc.1110.1393. |
[8] |
P. Carr and L. Wu,
Time-changed lévy processes and option pricing, J. Financial Economics, 71 (2004), 113-141.
doi: 10.1016/0304-405X(79)90015-1. |
[9] |
A. Dassios and H. Zhao,
A dynamic contagion process, Adv. in Appl. Probab., 43 (2011), 814-846.
doi: 10.1239/aap/1316792671. |
[10] |
B. Eraker,
Do stock prices and volatility jump? Reconciling evidence from spot and option prices, J. Finance, 59 (2004), 1367-1403.
doi: 10.1111/j.1540-6261.2004.00666.x. |
[11] |
B. Eraker, M. Johannes and N. Polson,
The impact of jumps in volatility and returns, J. Finance, 58 (2003), 1269-1300.
doi: 10.1111/1540-6261.00566. |
[12] |
E. Errais, K. Giesecke and L. R. Goldberg,
Affine point processes and portfolio credit risk, SIAM J. Financial Math., 1 (2010), 642-665.
doi: 10.1137/090771272. |
[13] |
S. Fischer,
Call option pricing when the exercise price is uncertain, and the valuation of index bonds, J. Finance, 33 (1978), 169-176.
doi: 10.1111/j.1540-6261.1978.tb03396.x. |
[14] |
A. G. Hawkes,
Point spectra of some mutually exciting point processes, J. Roy. Statist. Soc. Ser. B, 33 (1971), 438-443.
doi: 10.1111/j.2517-6161.1971.tb01530.x. |
[15] |
A. G. Hawkes,
Spectra of some self-exciting and mutually exciting point processes, Biometrika, 58 (1971), 83-90.
doi: 10.1093/biomet/58.1.83. |
[16] |
A. G. Hawkes,
Hawkes processes and their applications to finance: A review, Quant. Finance, 18 (2018), 193-198.
doi: 10.1080/14697688.2017.1403131. |
[17] |
S. G. Kou,
A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.
doi: 10.1287/mnsc.48.8.1086.166. |
[18] |
W. Liu and S.-P. Zhu, Pricing variance swaps under the Hawkes jump-diffusion process, J. Futures Markets, 39 (2019).
doi: 10.1002/fut.21997. |
[19] |
T. Lux and M. Marchesi,
Volatility clustering in financial markets: A microsimulation of interacting agents, Int. J. Theor. Appl. Finance, 3 (2000), 675-702.
doi: 10.1142/S0219024900000826. |
[20] |
Y. Ma, K. Shrestha and W. Xu,
Pricing vulnerable options with jump clustering, J. Futures Markets, 37 (2017), 1155-1178.
doi: 10.1002/fut.21843. |
[21] |
Y. Ma and W. Xu,
Structural credit risk modelling with Hawkes jump diffusion processes, J. Comput. Appl. Math., 303 (2016), 69-80.
doi: 10.1016/j.cam.2016.02.032. |
[22] |
J. M. Maheu and T. H. McCurdy,
News arrival, jump dynamics, and volatility components for individual stock returns, J. Finance, 59 (2004), 755-793.
doi: 10.1111/j.1540-6261.2004.00648.x. |
[23] |
B. Mandelbrot,
The variation of certain speculative prices, J. Business, 36 (1963), 394-419.
doi: 10.1086/294632. |
[24] |
W. Margrabe,
The value of an option to exchange one asset for another, J. Finance, 33 (1978), 177-186.
doi: 10.1111/j.1540-6261.1978.tb03397.x. |
[25] |
S. Meyer, J. Elias and M. Höhle,
A space–time conditional intensity model for invasive meningococcal disease occurrence, Biometrics, 68 (2012), 607-616.
doi: 10.1111/j.1541-0420.2011.01684.x. |
[26] |
Y. Ogata,
On Lewis' simulation method for point processes, IEEE Transactions on Information Theory, 27 (1981), 23-31.
doi: 10.1109/TIT.1981.1056305. |
[27] |
Y. Ogata,
Statistical models for earthquake occurrences and residual analysis for point processes, J. Amer. Statistical Association, 83 (1988), 9-27.
doi: 10.1080/01621459.1988.10478560. |
[28] |
J. Pan,
The jump-risk premia implicit in options: Evidence from an integrated time-series study, J. of Financial Economics, 63 (2002), 3-50.
doi: 10.1016/S0304-405X(01)00088-5. |
[29] |
P. Pasricha and A. Goel,
Pricing vulnerable power exchange options in an intensity based framework, J. Comput. Appl. Math., 355 (2019), 106-115.
doi: 10.1016/j.cam.2019.01.019. |
[30] |
A. Reinhart,
A review of self-exciting spatio-temporal point processes and their applications, Statist. Sci., 33 (2018), 330-333.
doi: 10.1214/18-STS654. |
[31] |
R. Tompkins,
Power options: hedging nonlinear risks, J. Risk, 2 (2000), 29-45.
doi: 10.21314/JOR.2000.022. |
[32] |
X. Wang,
Pricing power exchange options with correlated jump risk, Finance Research Letters, 19 (2016), 90-97.
doi: 10.1016/j.frl.2016.06.009. |
[33] |
X. Wang, S. Song and Y. Wang,
The valuation of power exchange options with counterparty risk and jump risk, J. Futures Markets, 37 (2017), 499-521.
doi: 10.1002/fut.21803. |
[34] |
J. Yu,
Empirical characteristic function estimation and its applications, Econometric Rev., 23 (2004), 93-123.
doi: 10.1081/ETC-120039605. |







Parameters | Values | Parameters | Values |
10 | 10 | ||
0.2 | 0.2 | ||
0 | 0 | ||
0.01 | 0.01 | ||
1 | 1 | ||
1 | 1 | ||
2 | 2 | ||
1 | 1 | ||
1 | 1 | ||
2 | 1 | ||
0.02 | 1 |
Parameters | Values | Parameters | Values |
10 | 10 | ||
0.2 | 0.2 | ||
0 | 0 | ||
0.01 | 0.01 | ||
1 | 1 | ||
1 | 1 | ||
2 | 2 | ||
1 | 1 | ||
1 | 1 | ||
2 | 1 | ||
0.02 | 1 |
[1] |
Xingchun Wang. Pricing path-dependent options under the Hawkes jump diffusion process. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022024 |
[2] |
Donny Citra Lesmana, Song Wang. A numerical scheme for pricing American options with transaction costs under a jump diffusion process. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1793-1813. doi: 10.3934/jimo.2017019 |
[3] |
Kai Zhang, Xiaoqi Yang, Kok Lay Teo. A power penalty approach to american option pricing with jump diffusion processes. Journal of Industrial and Management Optimization, 2008, 4 (4) : 783-799. doi: 10.3934/jimo.2008.4.783 |
[4] |
Qing-Qing Yang, Wai-Ki Ching, Wanhua He, Tak-Kuen Siu. Pricing vulnerable options under a Markov-modulated jump-diffusion model with fire sales. Journal of Industrial and Management Optimization, 2019, 15 (1) : 293-318. doi: 10.3934/jimo.2018044 |
[5] |
Wei Wang, Linyi Qian, Xiaonan Su. Pricing and hedging catastrophe equity put options under a Markov-modulated jump diffusion model. Journal of Industrial and Management Optimization, 2015, 11 (2) : 493-514. doi: 10.3934/jimo.2015.11.493 |
[6] |
Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2077-2094. doi: 10.3934/jimo.2021057 |
[7] |
Isabelle Kuhwald, Ilya Pavlyukevich. Bistable behaviour of a jump-diffusion driven by a periodic stable-like additive process. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3175-3190. doi: 10.3934/dcdsb.2016092 |
[8] |
Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298 |
[9] |
Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235 |
[10] |
Wei Wang, Yang Shen, Linyi Qian, Zhixin Yang. Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021072 |
[11] |
Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048 |
[12] |
Qiang Du, Zhan Huang, Richard B. Lehoucq. Nonlocal convection-diffusion volume-constrained problems and jump processes. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 373-389. doi: 10.3934/dcdsb.2014.19.373 |
[13] |
Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control and Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237 |
[14] |
Roberta Sirovich, Laura Sacerdote, Alessandro E. P. Villa. Cooperative behavior in a jump diffusion model for a simple network of spiking neurons. Mathematical Biosciences & Engineering, 2014, 11 (2) : 385-401. doi: 10.3934/mbe.2014.11.385 |
[15] |
Xin Zhang, Hui Meng, Jie Xiong, Yang Shen. Robust optimal investment and reinsurance of an insurer under Jump-diffusion models. Mathematical Control and Related Fields, 2019, 9 (1) : 59-76. doi: 10.3934/mcrf.2019003 |
[16] |
Kunyang Song, Yuping Song, Hanchao Wang. Threshold reweighted Nadaraya–Watson estimation of jump-diffusion models. Probability, Uncertainty and Quantitative Risk, 2022, 7 (1) : 31-44. doi: 10.3934/puqr.2022003 |
[17] |
Elvio Accinelli, Enrique Covarrubias. Evolution and jump in a Walrasian framework. Journal of Dynamics and Games, 2016, 3 (3) : 279-301. doi: 10.3934/jdg.2016015 |
[18] |
Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control and Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21 |
[19] |
Ziheng Chen, Siqing Gan, Xiaojie Wang. Mean-square approximations of Lévy noise driven SDEs with super-linearly growing diffusion and jump coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4513-4545. doi: 10.3934/dcdsb.2019154 |
[20] |
Ishak Alia. A non-exponential discounting time-inconsistent stochastic optimal control problem for jump-diffusion. Mathematical Control and Related Fields, 2019, 9 (3) : 541-570. doi: 10.3934/mcrf.2019025 |
2020 Impact Factor: 1.801
Tools
Article outline
Figures and Tables
[Back to Top]