[1]
|
W. Ai and S. Zhang, Strong duality for the CDT subproblem: A necessary and sufficient condition, SIAM J. Optim., 19 (2009), 1735-1756.
doi: 10.1137/07070601X.
|
[2]
|
A. I. Barvinok, Feasibility testing for systems of real quadratic equations, Discrete Comput. Geom., 10 (1993), 1-13.
doi: 10.1007/BF02573959.
|
[3]
|
A. Beck and D. Pan, A branch and bound algorithm for nonconvex quadratic optimization with ball and linear constraints, J. Global Optim., 69 (2017), 309-342.
doi: 10.1007/s10898-017-0521-1.
|
[4]
|
A. Ben-Tal and D. Den Hertog, Hidden conic quadratic representation of some nonconvex quadratic optimization problems, Math. Program., 143 (2014), 1-29.
doi: 10.1007/s10107-013-0710-8.
|
[5]
|
D. Bienstock and A. Michalka, Polynomial solvability of variants of the trust-region subproblem, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms Society for Industrial and Applied Mathematics, New York, 2014,380–390.
doi: 10.1137/1.9781611973402.28.
|
[6]
|
D. Bienstock, A note on polynomial solvability of the CDT problem, SIAM J. Optim., 26 (2016), 488-498.
doi: 10.1137/15M1009871.
|
[7]
|
I. M. Bomze and M. L. Overton, Narrowing the difficulty gap for the Celis-Dennis-Tapia problem, Math. Program., 151 (2015), 459-476.
doi: 10.1007/s10107-014-0836-3.
|
[8]
|
I. M. Bomze, V. Jeyakumar and G. Li, Extended trust-region problems with one or two balls: Exact copositive and Lagrangian relaxations, J. Global Optim., 71 (2018), 551-569.
doi: 10.1007/s10898-018-0607-4.
|
[9]
|
S. Burer and K. M. Anstreicher, Second-order-cone constraints for extended trust-region subproblems, SIAM J. Optim., 23 (2013), 432-451.
doi: 10.1137/110826862.
|
[10]
|
M. R. Celis, J. E. Dennis and R. A. Tapia, A trust region strategy for nonlinear equality constrained optimization, Numerical Optimization, 1984 (1985), 71-82.
|
[11]
|
M. Grant and S. Boyed, CVX: Matlab Software for Disciplined Convex Programming, version 2.1, (2014). Available at: http://cvxr.com/cvx.
|
[12]
|
N. Ho-Nguyen and F. Kilinc-Karzan, A second-order cone based approach for solving the trust-region subproblem and its variants, SIAM J. Optim., 27 (2017), 1485-1512.
doi: 10.1137/16M1065197.
|
[13]
|
R. Jiang and D. Li, Simultaneous diagonalization of matrices and its applications in quadratically constrained quadratic programming, SIAM J. Optim., 26 (2016), 1649-1668.
doi: 10.1137/15M1023920.
|
[14]
|
V. Jeyakumar and G. Y. Li, Trust-region problems with linear inequality constraints: Exact SDP relaxation, global optimality and robust optimization, Math. Program., 147 (2014), 171-206.
doi: 10.1007/s10107-013-0716-2.
|
[15]
|
S. Kim and M. Kojima, Second order cone programming relaxation of nonconvex quadratic optimization problems, Optim. Methods Softw., 15 (2001), 201-224.
doi: 10.1080/10556780108805819.
|
[16]
|
C. Lu, Z. Deng and Q. Jin, An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic programming problems with convex quadratic constraints, J. Global Optim., 67 (2017), 475-493.
doi: 10.1007/s10898-016-0436-2.
|
[17]
|
C. Lu, Z. Deng, J. Zhou and X. Guo, A sensitive-eigenvector based global algorithm for quadratically constrained quadratic programming, J. Global Optim., 73 (2019), 371-388.
doi: 10.1007/s10898-018-0726-y.
|
[18]
|
Z. Q. Luo, W. K. Ma, A. M. C. So, Y. Ye and S. Zhang, Semidefinite relaxation of quadratic optimization problems, IEEE Signal Processing Magazine, 27 (2010), 20-34.
doi: 10.1109/MSP.2010.936019.
|
[19]
|
D. R. Morrison, S. H. Jacobson, J. J. Sauppe and E. C. Sewell, Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning, Discrete Optim., 19 (2016), 79-102.
doi: 10.1016/j.disopt.2016.01.005.
|
[20]
|
K. B. Petersen and M. S. Pedersen, The matrix cookbook, Technical University of Denmark, 7 (2008), 510pp.
|
[21]
|
N. Sagara and M. Fukushima, A trust region method for nonsmooth convex optimization, J. Ind. Manag. Optim., 1 (2005), 171-180.
doi: 10.3934/jimo.2005.1.171.
|
[22]
|
Z. Sheng, G. Yuan, Z. Cui, X. Duan and X. Wang, An adaptive trust region algorithm for large-residual nonsmooth least squares problems, J. Ind. Manag. Optim., 14 (2018), 707-718.
doi: 10.3934/jimo.2017070.
|
[23]
|
J. F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw., 11 (1999), 625-653.
doi: 10.1080/10556789908805766.
|
[24]
|
J. F. Sturm and S. Zhang, On cones of nonnegative quadratic functions, Math. Oper. Res., 28 (2003), 246-267.
doi: 10.1287/moor.28.2.246.14485.
|
[25]
|
Y. Tian, Z. Deng, J. Luo and Y. Li, An intuitionistic fuzzy set based S3VM model for binary classification with mislabeled information, Fuzzy Optim. Decis. Mak., 17 (2018), 475-494.
doi: 10.1007/s10700-017-9282-z.
|
[26]
|
J. Zhou, S.-C. Fang and W. Xing, Conic approximation to quadratic optimization with linear complementarity constraints, Comput. Optim. Appl., 66 (2017), 97-122.
doi: 10.1007/s10589-016-9855-8.
|
[27]
|
J. Zhou and Z. Xu, A simultaneous diagonalization based SOCP relaxation for convex quadratic programs with linear complementarity constraints, Optim. Letters, 13 (2019), 1615-1630.
doi: 10.1007/s11590-018-1337-8.
|