doi: 10.3934/jimo.2019106

An approximate mean queue length formula for queueing systems with varying service rate

1. 

Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, China

2. 

The Chinese University of Hong Kong(Shenzhen), Shanghai Jiao Tong University, Zhejiang University of Technology

* Corresponding author: Jian Zhang

Received  October 2018 Revised  May 2019 Published  September 2019

In this paper, we analyze the delay performance of queueing systems in which the service rate varies with time and the number of service states may be infinite. Except in some simple special cases, in general, the queueing model with varying service rate is mathematically intractable. Motivated by the P-K formula for M/G/1 queue, we developed a limiting analysis approach based on the connection between the fluctuation of service rate and the mean queue length. Considering the two extreme service rates, we provide a lower bound and upper bound of mean queue length. Furthermore, an approximate mean queue length formula is derived from the convex combination of these two bounds. The accuracy of our approximation has been confirmed by extensive simulation studies with different system parameters. We also verified that all limiting cases of the system behavior are consistent with the predictions made by our formula.

Citation: Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019106
References:
[1]

D. P. Anderson, BOINC: A system for public-resource computing and storage, In Proceedings of the Workshop on Grid Computing, (2004). doi: 10.1109/GRID.2004.14.  Google Scholar

[2]

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, SETI@home: An experiment in public resource computing, Communications of the ACM, 45 (2002), 56-61. doi: 10.1145/581571.581573.  Google Scholar

[3]

M. Eisen and M. Tainiter, Stochastic variations in queuing processes, Operations Res., 11 (1963), 922–927. doi: 10.1287/opre.11.6.922.  Google Scholar

[4]

T. Estrada, M. Taufer and D. P. Anderson, Performance prediction and analysis of BOINC projects: An empirical study with EmBOINC, Journal of Grid Computing, 7 (2009), 537–554. doi: 10.1007/s10723-009-9126-3.  Google Scholar

[5]

B. Fan, D. Chiu and J. Lui, The Delicate Tradeoffs in BitTorrent-like File Sharing Protocol Design, In Proceedings of the 2006 IEEE International Conference on Network Protocols, (2006), 239–248. doi: 10.1109/ICNP.2006.320217.  Google Scholar

[6]

N. Gunaseelan, L. Liu, J. F. Chamberland and G. H. Huff, Performance analysis of wireless Hybrid-ARQ systems with delay-sensitive traffic, IEEE Transactions on Communications, 58 (2010), 1262–1272. doi: 10.1109/TCOMM.2010.04.090104.  Google Scholar

[7]

L. Huang and T. T. Lee, Generalized Pollaczek-Khinchin formula for Markov channels, IEEE Transactions on Communications, 61 (2013), 3530–3540. doi: 10.1109/TCOMM.2013.061913.120712.  Google Scholar

[8] F. P. Kelly, Reversibility and stochastic networks, Cambridge University Press, 2011.   Google Scholar
[9]

L. Kleinrock, Queueing Systems, Volume 1, Theory, John Wiley & Sons, New York, 1975.  Google Scholar

[10]

R. Kumar, Y. Liu and K. Ross, Stochastic Fluid Theory for P2P Streaming Systems, In IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications, (2007), 919–927. doi: 10.1109/INFCOM.2007.112.  Google Scholar

[11]

H. Li and T. Yang, Queues with a variable number of servers, European J. Oper. Res., 124 (2000), 615–628. doi: 10.1016/S0377-2217(99)00175-7.  Google Scholar

[12]

S. R. Mahabhashyam and N. Gautam, On queues with Markov modulated service rates, Queueing Syst., 51 (2005), 89–113. doi: 10.1007/s11134-005-2158-x.  Google Scholar

[13] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, John Hopkins Series in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1981.   Google Scholar
[14]

T. Phung-Duc, W. Rogiest and S. Wittevrongel, Single server retrial queues with speed scaling: Analysis and performance evaluation, J. Ind. Manag. Optim., 13 (2017), 1927–1943. doi: 10.3934/jimo.2017025.  Google Scholar

[15]

B. A. Salihu, P. Li, L. Sang, Z. Li, Y. Gao and D. Yang, Network calculus delay bounds in multi-server queueing networks with stochastic arrivals and stochastic services, In Global Communications Conference (GLOBECOM), IEEE (2015), 1–7. doi: 10.1109/GLOCOM.2014.7417645.  Google Scholar

[16]

M. Yajima, and T. Phung-Duc, Batch arrival single server queue with variable service speed and setup time, Queueing Syst., 86 (2017), 241–260. doi: 10.1007/s11134-017-9533-2.  Google Scholar

[17]

M. Yajima and T. Phung-Duc, A central limit theorem for a Markov-modulated infinite-server queue with batch Poisson arrivals and binomial catastrophes, Performance Evaluation, 129 (2019), 2–14. doi: 10.1016/j.peva.2018.10.002.  Google Scholar

[18]

J. ZhangZ. ZhouT. T. Lee and T. Ye, Delay analysis of three-state Markov channels, in Lecture Notes of Computer Science, 10591 (2017), 101-117.  doi: 10.1007/978-3-319-68520-5_7.  Google Scholar

[19]

J. Zheng, C. Luo and L. Yu, Performance analysis of stochastic multi server systems, In Communications and Networking in China (ChinaCom), 2015 10th International Conference on, IEEE (2015), 562–566. Google Scholar

[20]

BOINCstats, Available from: http://boincstats.com. Google Scholar

show all references

References:
[1]

D. P. Anderson, BOINC: A system for public-resource computing and storage, In Proceedings of the Workshop on Grid Computing, (2004). doi: 10.1109/GRID.2004.14.  Google Scholar

[2]

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, SETI@home: An experiment in public resource computing, Communications of the ACM, 45 (2002), 56-61. doi: 10.1145/581571.581573.  Google Scholar

[3]

M. Eisen and M. Tainiter, Stochastic variations in queuing processes, Operations Res., 11 (1963), 922–927. doi: 10.1287/opre.11.6.922.  Google Scholar

[4]

T. Estrada, M. Taufer and D. P. Anderson, Performance prediction and analysis of BOINC projects: An empirical study with EmBOINC, Journal of Grid Computing, 7 (2009), 537–554. doi: 10.1007/s10723-009-9126-3.  Google Scholar

[5]

B. Fan, D. Chiu and J. Lui, The Delicate Tradeoffs in BitTorrent-like File Sharing Protocol Design, In Proceedings of the 2006 IEEE International Conference on Network Protocols, (2006), 239–248. doi: 10.1109/ICNP.2006.320217.  Google Scholar

[6]

N. Gunaseelan, L. Liu, J. F. Chamberland and G. H. Huff, Performance analysis of wireless Hybrid-ARQ systems with delay-sensitive traffic, IEEE Transactions on Communications, 58 (2010), 1262–1272. doi: 10.1109/TCOMM.2010.04.090104.  Google Scholar

[7]

L. Huang and T. T. Lee, Generalized Pollaczek-Khinchin formula for Markov channels, IEEE Transactions on Communications, 61 (2013), 3530–3540. doi: 10.1109/TCOMM.2013.061913.120712.  Google Scholar

[8] F. P. Kelly, Reversibility and stochastic networks, Cambridge University Press, 2011.   Google Scholar
[9]

L. Kleinrock, Queueing Systems, Volume 1, Theory, John Wiley & Sons, New York, 1975.  Google Scholar

[10]

R. Kumar, Y. Liu and K. Ross, Stochastic Fluid Theory for P2P Streaming Systems, In IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications, (2007), 919–927. doi: 10.1109/INFCOM.2007.112.  Google Scholar

[11]

H. Li and T. Yang, Queues with a variable number of servers, European J. Oper. Res., 124 (2000), 615–628. doi: 10.1016/S0377-2217(99)00175-7.  Google Scholar

[12]

S. R. Mahabhashyam and N. Gautam, On queues with Markov modulated service rates, Queueing Syst., 51 (2005), 89–113. doi: 10.1007/s11134-005-2158-x.  Google Scholar

[13] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, John Hopkins Series in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1981.   Google Scholar
[14]

T. Phung-Duc, W. Rogiest and S. Wittevrongel, Single server retrial queues with speed scaling: Analysis and performance evaluation, J. Ind. Manag. Optim., 13 (2017), 1927–1943. doi: 10.3934/jimo.2017025.  Google Scholar

[15]

B. A. Salihu, P. Li, L. Sang, Z. Li, Y. Gao and D. Yang, Network calculus delay bounds in multi-server queueing networks with stochastic arrivals and stochastic services, In Global Communications Conference (GLOBECOM), IEEE (2015), 1–7. doi: 10.1109/GLOCOM.2014.7417645.  Google Scholar

[16]

M. Yajima, and T. Phung-Duc, Batch arrival single server queue with variable service speed and setup time, Queueing Syst., 86 (2017), 241–260. doi: 10.1007/s11134-017-9533-2.  Google Scholar

[17]

M. Yajima and T. Phung-Duc, A central limit theorem for a Markov-modulated infinite-server queue with batch Poisson arrivals and binomial catastrophes, Performance Evaluation, 129 (2019), 2–14. doi: 10.1016/j.peva.2018.10.002.  Google Scholar

[18]

J. ZhangZ. ZhouT. T. Lee and T. Ye, Delay analysis of three-state Markov channels, in Lecture Notes of Computer Science, 10591 (2017), 101-117.  doi: 10.1007/978-3-319-68520-5_7.  Google Scholar

[19]

J. Zheng, C. Luo and L. Yu, Performance analysis of stochastic multi server systems, In Communications and Networking in China (ChinaCom), 2015 10th International Conference on, IEEE (2015), 562–566. Google Scholar

[20]

BOINCstats, Available from: http://boincstats.com. Google Scholar

Figure 1.  The continuous time Markov chain of the server process
Figure 2.  The continuous-time Markov chain of the queueing model
Figure 3.  The fluctuation of service rate $ \mu $ over the time with parameter $ \frac{\mu_c}{\mu_s} = 10 $, $ \lambda_s = 10 $
Figure 4.  The first and second moments of service time increase with the variance of the service rate
Figure 5.  Service rate becomes a constant when system reaches equilibrium
Figure 6.  The two-state extreme scenario
Figure 7.  The transition diagram of the two service states
Figure 8.  Mean queue length $ L $ is bounded by $ L_1 $ and $ L_2 $
Figure 9.  Overload and underload regions
Figure 10.  Overload probability $ a $ vs. parameter $ \alpha $
Figure 11.  Mean queue length in overload region $ L_{overload} $ and overload probability $ a $
Figure 12.  Simulation and approximation results of mean queue lengths
[1]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[2]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[3]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[5]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[6]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[10]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[13]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[16]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[17]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (140)
  • HTML views (423)
  • Cited by (0)

Other articles
by authors

[Back to Top]