
-
Previous Article
Inverse group 1-median problem on trees
- JIMO Home
- This Issue
-
Next Article
An approximate mean queue length formula for queueing systems with varying service rate
A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size
1. | School of Automation, Central South University, Changsha, Hunan410083, China |
2. | School of Computer, Hunan University of Technology, Zhuzhou, Hunan412007, China |
The existing method of determining the size of the time series sliding window by empirical value exists some problems which should be solved urgently, such as when considering a large amount of information and high density of the original measurement data collected from industry equipment, the important information of the data cannot be maximally retained, and the calculation complexity is high. Therefore, by studying the effect of sliding window on time series similarity technology in practical application, an algorithm to determine the initial size of the sliding window is proposed. The upper and lower boundary curves with a higher fitting degree are constructed, and the trend weighting is introduced into the $ LB\_Hust $ distance calculation method to reduce the difficulty of mathematical modeling and improve the efficiency of data similarity computation.
References:
[1] |
R. Belohlavek and V. Vychodil,
Relational similarity-based model of data part 1: Foundations and query systems, Int. J. General Syst., 46 (2017), 671-751.
doi: 10.1080/03081079.2017.1357550. |
[2] |
W. Bian and D. Tao,
Max-Min distance analysis by using sequential sdp relaxation for dimension reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1037-1050.
doi: 10.1109/TPAMI.2010.189. |
[3] |
M. R. Chernick, Wavelet Methods for Time Series Analysis, Technometrics, 43 (2016), 491-508. Google Scholar |
[4] |
L. Dong, S. Liu and H. Zhang,
A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples, Pattern Recognition, 64 (2017), 374-385.
doi: 10.1016/j.patcog.2016.11.026. |
[5] |
G. Hesamian and M. G. Akbari,
A semi-parametric model for time series based on fuzzy data, IEEE Transactions on Fuzzy Systems, 99 (2018), 1-10.
doi: 10.1109/TFUZZ.2018.2791931. |
[6] |
K. Hornik, I. Feinerer and M. Kober,
Spherical k-means clustering, J. Statistical Software, 50 (2017), 1-22.
doi: 10.18637/jss.v050.i10. |
[7] |
B. Hu, P. C. Dixon and J. V. Jacobs,
Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking, J. Biomechanics, 71 (2018), 36-48.
doi: 10.1016/j.jbiomech.2018.01.005. |
[8] |
I. Güler and M. Meghdadi,
A different approach to off-line handwritten signature verification using the optimal dynamic time warping algorithm, Digital Signal Processing, 18 (2008), 940-950.
doi: 10.1016/j.dsp.2008.06.005. |
[9] |
H. Ji, C. Zhou and Z. Liu, An approximate representation method for time series symbol aggregation based on the distance between origin and end, Computer Science, 10 (2018), 135-147. Google Scholar |
[10] |
R. J. Kate,
Using dynamic time warping distances as features for improved time series classification, Data Min. Knowl. Discov., 30 (2016), 283-312.
doi: 10.1007/s10618-015-0418-x. |
[11] |
S. W. Kim, J. Kim and S. Park,
Physical database design for efficient time-series similarity search, IEICE Trans Commun., 91 (2008), 1251-1254.
doi: 10.1093/ietcom/e91-b.4.1251. |
[12] |
G. Lee, U. Yun and K. Ryu,
Sliding window based weighted maximal frequent pattern mining over data streams, Expert Syst. Appl., 41 (2014), 694-708.
doi: 10.1016/j.eswa.2013.07.094. |
[13] |
R. Li, X. Wu and S. Yang,
Dynamic on-state resistance test and evaluation of GaN power devices under hard and soft switching conditions by double and multiple pulses, IEEE Transactions on Power Electronics, 34 (2018), 1-6.
doi: 10.1109/TPEL.2018.2844302. |
[14] |
T. Luo, C. Hou and F. Nie,
Dimension reduction for non-Gaussian data by adaptive discriminative analysis, IEEE Transactions on Cybernetics, 49 (2018), 1-14.
doi: 10.1109/TCYB.2018.2789524. |
[15] |
M. D. C. Moura, E. Zio and I. D. Lins,
Failure and reliability prediction by support vector machines regression of time series data, Reliability Engineering and Syst. Safety, 96 (2017), 1527-1534.
doi: 10.1016/j.ress.2011.06.006. |
[16] |
S. J. Noh, D. Shim and M. Jeon,
Adaptive sliding-window strategy for vehicle detection in highway environments, IEEE Transactions on Intelligent Transportation Syst., 17 (2016), 323-335.
doi: 10.1109/TITS.2015.2466652. |
[17] |
N. M. Parthaláin, Q. Shen and R. Jensen,
A distance measure approach to exploring the rough set boundary region for attribute reduction, IEEE Transactions on Knowledge and Data Engineering, 22 (2010), 305-317.
doi: 10.1109/TKDE.2009.119. |
[18] |
F. Petitjean, G. Forestier and G. I. Webb,
Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm, Knowledge and Information Syst., 47 (2016), 1-26.
doi: 10.1007/s10115-015-0878-8. |
[19] |
H. Ren, M. Liu and Z. Li,
A piecewise aggregate pattern representation approach for anomaly detection in time series, Knowledge-Based Syst., 21 (2017), 213-220.
doi: 10.1016/j.knosys.2017.07.021. |
[20] |
J. W. Roh and B. K. Yi,
Efficient indexing of interval time sequences, Inform. Process. Lett., 109 (2008), 1-12.
doi: 10.1016/j.ipl.2008.08.003. |
[21] |
H. Ryang and U. Yun,
High utility pattern mining over data streams with sliding window technique, Expert Syst. Appl., 57 (2016), 214-231.
doi: 10.1016/j.eswa.2016.03.001. |
[22] |
M. J. Safari, F. A. Davani and H. Afarideh,
Discrete fourier transform method for discrimination of digital scintillation pulses in mixed neutron-gamma fields, IEEE Transactions on Nuclear Science, 63 (2016), 325-332.
doi: 10.1109/TNS.2016.2514400. |
[23] |
D. Schultz and B. Jain,
Nonsmooth analysis and subgradient methods for averaging in dynamic time warping spaces, Pattern Recognition, 74 (2018), 340-358.
doi: 10.1016/j.patcog.2017.08.012. |
[24] |
Y. Sun, J. Li and J. Liu,
An improvement of symbolic aggregate approximation distance measure for time series, Neurocomputing, 102 (2014), 189-198.
doi: 10.1016/j.neucom.2014.01.045. |
[25] |
M. Vafaeipour, O. Rahbari and M. A. Rosen,
Application of sliding window technique for prediction of wind velocity time series, Inter. J. Energy and Environmental Engineering, 5 (2014), 105-116.
doi: 10.1007/s40095-014-0105-5. |
[26] |
Y. Xue, X. Mei and Y. Zhi, Method of subway health status recognition based on time series data mining, Information Sciences, 38 (2018), 905-910. Google Scholar |
[27] |
G. Yuan, P. Sun and J. Zhao,
A review of moving object trajectory clustering algorithms, Artificial Intelligence Review, 47 (2017), 1-22.
doi: 10.1007/s10462-016-9477-7. |
[28] |
R. Yao, G. Lin and Q. Shi,
Efficient dense labelling of human activity sequences from wearables using fully convolutional networks, Pattern Recognition, 78 (2017), 221-232.
doi: 10.1016/j.patcog.2017.12.024. |
[29] |
S. Yue, Y. Li and Q. Yang,
Comparative analysis of core loss calculation methods for magnetic materials under no sinusoidal excitations, IEEE Transactions on Magnetics, 54 (2018), 1-5.
doi: 10.1109/TMAG.2018.2842064. |
[30] |
U. Yun, D. Kim, H. Ryang, G. Lee and K. Lee,
Mining recent high average utility patterns based on sliding window from stream data, J. Intelligent and Fuzzy Syst., 30 (2016), 3605-3617.
doi: 10.3233/IFS-162106. |
[31] |
U. Yun, D. Kim, E. Yoon and H. Fujita,
Damped window based high average utility pattern mining over data streams, Knowl.-Based Syst., 144 (2018), 188-205.
doi: 10.1016/j.knosys.2017.12.029. |
[32] |
U. Yun and G. Lee,
Sliding window based weighted erasable stream pattern mining for stream data applications, Future Generation Comp. Syst., 59 (2016), 1-20.
doi: 10.1016/j.future.2015.12.012. |
[33] |
U. Yun, G. Lee and K. Ryu,
Mining maximal frequent patterns by considering weight conditions over data streams, Knowl.-Based Syst., 55 (2014), 49-65.
doi: 10.1016/j.knosys.2013.10.011. |
[34] |
U. Yun, G. Lee and E. Yoon,
Efficient high utility pattern mining for establishing manufacturing plans with sliding window control, IEEE Trans. Industrial Electronics, 64 (2017), 7239-7249.
doi: 10.1109/TIE.2017.2682782. |
[35] |
M. Zhu, D. G. M. Mitchell and M. Lentmaier,
Braided convolutional codes with sliding window decoding, IEEE Trans. on Communications, 65 (2017), 3645-3658.
doi: 10.1109/TCOMM.2017.2707073. |
show all references
References:
[1] |
R. Belohlavek and V. Vychodil,
Relational similarity-based model of data part 1: Foundations and query systems, Int. J. General Syst., 46 (2017), 671-751.
doi: 10.1080/03081079.2017.1357550. |
[2] |
W. Bian and D. Tao,
Max-Min distance analysis by using sequential sdp relaxation for dimension reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1037-1050.
doi: 10.1109/TPAMI.2010.189. |
[3] |
M. R. Chernick, Wavelet Methods for Time Series Analysis, Technometrics, 43 (2016), 491-508. Google Scholar |
[4] |
L. Dong, S. Liu and H. Zhang,
A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples, Pattern Recognition, 64 (2017), 374-385.
doi: 10.1016/j.patcog.2016.11.026. |
[5] |
G. Hesamian and M. G. Akbari,
A semi-parametric model for time series based on fuzzy data, IEEE Transactions on Fuzzy Systems, 99 (2018), 1-10.
doi: 10.1109/TFUZZ.2018.2791931. |
[6] |
K. Hornik, I. Feinerer and M. Kober,
Spherical k-means clustering, J. Statistical Software, 50 (2017), 1-22.
doi: 10.18637/jss.v050.i10. |
[7] |
B. Hu, P. C. Dixon and J. V. Jacobs,
Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking, J. Biomechanics, 71 (2018), 36-48.
doi: 10.1016/j.jbiomech.2018.01.005. |
[8] |
I. Güler and M. Meghdadi,
A different approach to off-line handwritten signature verification using the optimal dynamic time warping algorithm, Digital Signal Processing, 18 (2008), 940-950.
doi: 10.1016/j.dsp.2008.06.005. |
[9] |
H. Ji, C. Zhou and Z. Liu, An approximate representation method for time series symbol aggregation based on the distance between origin and end, Computer Science, 10 (2018), 135-147. Google Scholar |
[10] |
R. J. Kate,
Using dynamic time warping distances as features for improved time series classification, Data Min. Knowl. Discov., 30 (2016), 283-312.
doi: 10.1007/s10618-015-0418-x. |
[11] |
S. W. Kim, J. Kim and S. Park,
Physical database design for efficient time-series similarity search, IEICE Trans Commun., 91 (2008), 1251-1254.
doi: 10.1093/ietcom/e91-b.4.1251. |
[12] |
G. Lee, U. Yun and K. Ryu,
Sliding window based weighted maximal frequent pattern mining over data streams, Expert Syst. Appl., 41 (2014), 694-708.
doi: 10.1016/j.eswa.2013.07.094. |
[13] |
R. Li, X. Wu and S. Yang,
Dynamic on-state resistance test and evaluation of GaN power devices under hard and soft switching conditions by double and multiple pulses, IEEE Transactions on Power Electronics, 34 (2018), 1-6.
doi: 10.1109/TPEL.2018.2844302. |
[14] |
T. Luo, C. Hou and F. Nie,
Dimension reduction for non-Gaussian data by adaptive discriminative analysis, IEEE Transactions on Cybernetics, 49 (2018), 1-14.
doi: 10.1109/TCYB.2018.2789524. |
[15] |
M. D. C. Moura, E. Zio and I. D. Lins,
Failure and reliability prediction by support vector machines regression of time series data, Reliability Engineering and Syst. Safety, 96 (2017), 1527-1534.
doi: 10.1016/j.ress.2011.06.006. |
[16] |
S. J. Noh, D. Shim and M. Jeon,
Adaptive sliding-window strategy for vehicle detection in highway environments, IEEE Transactions on Intelligent Transportation Syst., 17 (2016), 323-335.
doi: 10.1109/TITS.2015.2466652. |
[17] |
N. M. Parthaláin, Q. Shen and R. Jensen,
A distance measure approach to exploring the rough set boundary region for attribute reduction, IEEE Transactions on Knowledge and Data Engineering, 22 (2010), 305-317.
doi: 10.1109/TKDE.2009.119. |
[18] |
F. Petitjean, G. Forestier and G. I. Webb,
Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm, Knowledge and Information Syst., 47 (2016), 1-26.
doi: 10.1007/s10115-015-0878-8. |
[19] |
H. Ren, M. Liu and Z. Li,
A piecewise aggregate pattern representation approach for anomaly detection in time series, Knowledge-Based Syst., 21 (2017), 213-220.
doi: 10.1016/j.knosys.2017.07.021. |
[20] |
J. W. Roh and B. K. Yi,
Efficient indexing of interval time sequences, Inform. Process. Lett., 109 (2008), 1-12.
doi: 10.1016/j.ipl.2008.08.003. |
[21] |
H. Ryang and U. Yun,
High utility pattern mining over data streams with sliding window technique, Expert Syst. Appl., 57 (2016), 214-231.
doi: 10.1016/j.eswa.2016.03.001. |
[22] |
M. J. Safari, F. A. Davani and H. Afarideh,
Discrete fourier transform method for discrimination of digital scintillation pulses in mixed neutron-gamma fields, IEEE Transactions on Nuclear Science, 63 (2016), 325-332.
doi: 10.1109/TNS.2016.2514400. |
[23] |
D. Schultz and B. Jain,
Nonsmooth analysis and subgradient methods for averaging in dynamic time warping spaces, Pattern Recognition, 74 (2018), 340-358.
doi: 10.1016/j.patcog.2017.08.012. |
[24] |
Y. Sun, J. Li and J. Liu,
An improvement of symbolic aggregate approximation distance measure for time series, Neurocomputing, 102 (2014), 189-198.
doi: 10.1016/j.neucom.2014.01.045. |
[25] |
M. Vafaeipour, O. Rahbari and M. A. Rosen,
Application of sliding window technique for prediction of wind velocity time series, Inter. J. Energy and Environmental Engineering, 5 (2014), 105-116.
doi: 10.1007/s40095-014-0105-5. |
[26] |
Y. Xue, X. Mei and Y. Zhi, Method of subway health status recognition based on time series data mining, Information Sciences, 38 (2018), 905-910. Google Scholar |
[27] |
G. Yuan, P. Sun and J. Zhao,
A review of moving object trajectory clustering algorithms, Artificial Intelligence Review, 47 (2017), 1-22.
doi: 10.1007/s10462-016-9477-7. |
[28] |
R. Yao, G. Lin and Q. Shi,
Efficient dense labelling of human activity sequences from wearables using fully convolutional networks, Pattern Recognition, 78 (2017), 221-232.
doi: 10.1016/j.patcog.2017.12.024. |
[29] |
S. Yue, Y. Li and Q. Yang,
Comparative analysis of core loss calculation methods for magnetic materials under no sinusoidal excitations, IEEE Transactions on Magnetics, 54 (2018), 1-5.
doi: 10.1109/TMAG.2018.2842064. |
[30] |
U. Yun, D. Kim, H. Ryang, G. Lee and K. Lee,
Mining recent high average utility patterns based on sliding window from stream data, J. Intelligent and Fuzzy Syst., 30 (2016), 3605-3617.
doi: 10.3233/IFS-162106. |
[31] |
U. Yun, D. Kim, E. Yoon and H. Fujita,
Damped window based high average utility pattern mining over data streams, Knowl.-Based Syst., 144 (2018), 188-205.
doi: 10.1016/j.knosys.2017.12.029. |
[32] |
U. Yun and G. Lee,
Sliding window based weighted erasable stream pattern mining for stream data applications, Future Generation Comp. Syst., 59 (2016), 1-20.
doi: 10.1016/j.future.2015.12.012. |
[33] |
U. Yun, G. Lee and K. Ryu,
Mining maximal frequent patterns by considering weight conditions over data streams, Knowl.-Based Syst., 55 (2014), 49-65.
doi: 10.1016/j.knosys.2013.10.011. |
[34] |
U. Yun, G. Lee and E. Yoon,
Efficient high utility pattern mining for establishing manufacturing plans with sliding window control, IEEE Trans. Industrial Electronics, 64 (2017), 7239-7249.
doi: 10.1109/TIE.2017.2682782. |
[35] |
M. Zhu, D. G. M. Mitchell and M. Lentmaier,
Braided convolutional codes with sliding window decoding, IEEE Trans. on Communications, 65 (2017), 3645-3658.
doi: 10.1109/TCOMM.2017.2707073. |












Type | Items | Status |
1 | 1-100 | Normal |
2 | 101-200 | Cyclic |
3 | 201-300 | Increasing trend |
4 | 301-400 | Decreasing trend |
5 | 401-500 | Upward shift |
6 | 501-600 | Downward shift |
Type | Items | Status |
1 | 1-100 | Normal |
2 | 101-200 | Cyclic |
3 | 201-300 | Increasing trend |
4 | 301-400 | Decreasing trend |
5 | 401-500 | Upward shift |
6 | 501-600 | Downward shift |
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
2 | 49.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3 | 55.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4 | 54.8 | 60.6 | - | - | - | - | - | - | - | - | - | - | - | - | - |
5 | 58.7 | 61.2 | - | - | - | - | - | - | - | - | - | - | - | - | - |
6 | 64.3 | 65.3 | 60.0 | - | - | - | - | - | - | - | - | - | - | - | - |
7 | 62.5 | 63.9 | 61.3 | - | - | - | - | - | - | - | - | - | - | - | - |
8 | 64.8 | 65.6 | 64.0 | 62.6 | - | - | - | - | - | - | - | - | - | - | - |
9 | 62.5 | 61.2 | 63.5 | 62.3 | - | - | - | - | - | - | - | - | - | - | - |
10 | 63.4 | 63.9 | 59.1 | 62.9 | 60.8 | - | - | - | - | - | - | - | - | - | - |
11 | 58.0 | 61.9 | 62.1 | 58.5 | 60.1 | - | - | - | - | - | - | - | - | - | - |
12 | 61.3 | 61.2 | 58.3 | 61.1 | 60.9 | 59.1 | - | - | - | - | - | - | - | - | - |
13 | 60.2 | 59.9 | 59.1 | 49.3 | 58.2 | 49.3 | - | - | - | - | - | - | - | - | - |
14 | 49.9 | 59.6 | 60.2 | 60.8 | 59.1 | 60.1 | 61.7 | - | - | - | - | - | - | - | - |
15 | 55.9 | 56.2 | 53.2 | 48.2 | 60.2 | 49.2 | 58.7 | - | - | - | - | - | - | - | - |
16 | 60.9 | 55.2 | 58.3 | 58.0 | 52.1 | 50.0 | 56.1 | 49.0 | - | - | - | - | - | - | - |
17 | 49.2 | 53.1 | 54.4 | 55.2 | 60.8 | 59.4 | 51.7 | 53.3 | - | - | - | - | - | - | - |
18 | 53.7 | 54.4 | 52.0 | 52.3 | 52.8 | 60.1 | 59.2 | 49.2 | 49.2 | - | - | - | - | - | - |
19 | 58.3 | 60.8 | 55.1 | 50.3 | 58.7 | 58.0 | 58.1 | 53.0 | 51.9 | - | - | - | - | - | - |
20 | 50.7 | 53.3 | 55.8 | 50.1 | 42.3 | 45.7 | 50.0 | 51.2 | 51.2 | 46.3 | - | - | - | - | - |
21 | 49.6 | 50.2 | 46.9 | 46.5 | 47.2 | 47.1 | 47.5 | 46.0 | 48.2 | 43.9 | - | - | - | - | - |
22 | 51.3 | 49.9 | 48.2 | 46.7 | 50.0 | 45.0 | 40.0 | 39.2 | 39.5 | 40.7 | 39.1 | - | - | - | - |
23 | 39.9 | 54.2 | 50.0 | 49.8 | 49.0 | 36.8 | 36.5 | 38.1 | 42.5 | 43.9 | 35.9 | - | - | - | - |
24 | 46.8 | 51.9 | 48.3 | 45.0 | 38.2 | 42.7 | 39.4 | 50.2 | 41.9 | 38.4 | 43.3 | 51.8 | - | - | - |
25 | 51.6 | 40.0 | 58.7 | 43.1 | 40.0 | 39.4 | 35.0 | 45.3 | 45.9 | 41.2 | 38.1 | 40.9 | - | - | - |
26 | 47.3 | 48.6 | 50.3 | 39.6 | 42.6 | 55.2 | 42.0 | 36.1 | 35.0 | 42.0 | 43.8 | 39.5 | 47.8 | - | - |
27 | 47.5 | 51.3 | 40.0 | 41.6 | 39.5 | 35.0 | 50.0 | 49.2 | 39.4 | 38.4 | 35.6 | 39.2 | 49.9 | - | - |
28 | 45.0 | 40.4 | 38.4 | 35.0 | 35.7 | 46.2 | 50.6 | 45.2 | 39.1 | 39.6 | 42.1 | 48.2 | 40.0 | 38.9 | - |
29 | 50.1 | 48.3 | 40.2 | 41.6 | 35.9 | 36.1 | 40.3 | 39.4 | 50.1 | 46.3 | 39.6 | 35.9 | 35.9 | 35.0 | - |
30 | 42.2 | 49.8 | 45.0 | 39.2 | 40.0 | 38.9 | 40.4 | 39.3 | 37.5 | 38.6 | 36.3 | 36.9 | 35.0 | 36.2 | 35.2 |
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
2 | 49.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3 | 55.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4 | 54.8 | 60.6 | - | - | - | - | - | - | - | - | - | - | - | - | - |
5 | 58.7 | 61.2 | - | - | - | - | - | - | - | - | - | - | - | - | - |
6 | 64.3 | 65.3 | 60.0 | - | - | - | - | - | - | - | - | - | - | - | - |
7 | 62.5 | 63.9 | 61.3 | - | - | - | - | - | - | - | - | - | - | - | - |
8 | 64.8 | 65.6 | 64.0 | 62.6 | - | - | - | - | - | - | - | - | - | - | - |
9 | 62.5 | 61.2 | 63.5 | 62.3 | - | - | - | - | - | - | - | - | - | - | - |
10 | 63.4 | 63.9 | 59.1 | 62.9 | 60.8 | - | - | - | - | - | - | - | - | - | - |
11 | 58.0 | 61.9 | 62.1 | 58.5 | 60.1 | - | - | - | - | - | - | - | - | - | - |
12 | 61.3 | 61.2 | 58.3 | 61.1 | 60.9 | 59.1 | - | - | - | - | - | - | - | - | - |
13 | 60.2 | 59.9 | 59.1 | 49.3 | 58.2 | 49.3 | - | - | - | - | - | - | - | - | - |
14 | 49.9 | 59.6 | 60.2 | 60.8 | 59.1 | 60.1 | 61.7 | - | - | - | - | - | - | - | - |
15 | 55.9 | 56.2 | 53.2 | 48.2 | 60.2 | 49.2 | 58.7 | - | - | - | - | - | - | - | - |
16 | 60.9 | 55.2 | 58.3 | 58.0 | 52.1 | 50.0 | 56.1 | 49.0 | - | - | - | - | - | - | - |
17 | 49.2 | 53.1 | 54.4 | 55.2 | 60.8 | 59.4 | 51.7 | 53.3 | - | - | - | - | - | - | - |
18 | 53.7 | 54.4 | 52.0 | 52.3 | 52.8 | 60.1 | 59.2 | 49.2 | 49.2 | - | - | - | - | - | - |
19 | 58.3 | 60.8 | 55.1 | 50.3 | 58.7 | 58.0 | 58.1 | 53.0 | 51.9 | - | - | - | - | - | - |
20 | 50.7 | 53.3 | 55.8 | 50.1 | 42.3 | 45.7 | 50.0 | 51.2 | 51.2 | 46.3 | - | - | - | - | - |
21 | 49.6 | 50.2 | 46.9 | 46.5 | 47.2 | 47.1 | 47.5 | 46.0 | 48.2 | 43.9 | - | - | - | - | - |
22 | 51.3 | 49.9 | 48.2 | 46.7 | 50.0 | 45.0 | 40.0 | 39.2 | 39.5 | 40.7 | 39.1 | - | - | - | - |
23 | 39.9 | 54.2 | 50.0 | 49.8 | 49.0 | 36.8 | 36.5 | 38.1 | 42.5 | 43.9 | 35.9 | - | - | - | - |
24 | 46.8 | 51.9 | 48.3 | 45.0 | 38.2 | 42.7 | 39.4 | 50.2 | 41.9 | 38.4 | 43.3 | 51.8 | - | - | - |
25 | 51.6 | 40.0 | 58.7 | 43.1 | 40.0 | 39.4 | 35.0 | 45.3 | 45.9 | 41.2 | 38.1 | 40.9 | - | - | - |
26 | 47.3 | 48.6 | 50.3 | 39.6 | 42.6 | 55.2 | 42.0 | 36.1 | 35.0 | 42.0 | 43.8 | 39.5 | 47.8 | - | - |
27 | 47.5 | 51.3 | 40.0 | 41.6 | 39.5 | 35.0 | 50.0 | 49.2 | 39.4 | 38.4 | 35.6 | 39.2 | 49.9 | - | - |
28 | 45.0 | 40.4 | 38.4 | 35.0 | 35.7 | 46.2 | 50.6 | 45.2 | 39.1 | 39.6 | 42.1 | 48.2 | 40.0 | 38.9 | - |
29 | 50.1 | 48.3 | 40.2 | 41.6 | 35.9 | 36.1 | 40.3 | 39.4 | 50.1 | 46.3 | 39.6 | 35.9 | 35.9 | 35.0 | - |
30 | 42.2 | 49.8 | 45.0 | 39.2 | 40.0 | 38.9 | 40.4 | 39.3 | 37.5 | 38.6 | 36.3 | 36.9 | 35.0 | 36.2 | 35.2 |
Dataset | Samples | Categories | Attributes |
temperature | 148 | 3 | 2 |
pressure | 169 | 4 | 12 |
position | 327 | 10 | 17 |
concentration | 112 | 6 | 16 |
flow rate | 236 | 5 | 7 |
Dataset | Samples | Categories | Attributes |
temperature | 148 | 3 | 2 |
pressure | 169 | 4 | 12 |
position | 327 | 10 | 17 |
concentration | 112 | 6 | 16 |
flow rate | 236 | 5 | 7 |
Dataset | The optimal value | Average precision | ||||
test set | training set | |||||
temperature | 8 | 0.6 | 0.4 | |||
pressure | 9 | 0.6 | 0.4 | |||
position | 8 | 0.6 | 0.4 | |||
concentration | 8 | 0.6 | 0.4 | |||
flow rate | 8 | 0.6 | 0.4 |
Dataset | The optimal value | Average precision | ||||
test set | training set | |||||
temperature | 8 | 0.6 | 0.4 | |||
pressure | 9 | 0.6 | 0.4 | |||
position | 8 | 0.6 | 0.4 | |||
concentration | 8 | 0.6 | 0.4 | |||
flow rate | 8 | 0.6 | 0.4 |
[1] |
Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191 |
[2] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[3] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[4] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[5] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[6] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[7] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[8] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[9] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[10] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[11] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[12] |
Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075 |
[13] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[14] |
Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493 |
[15] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[16] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[17] |
Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195 |
[18] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[19] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[20] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]