
-
Previous Article
Inverse group 1-median problem on trees
- JIMO Home
- This Issue
-
Next Article
An approximate mean queue length formula for queueing systems with varying service rate
A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size
1. | School of Automation, Central South University, Changsha, Hunan410083, China |
2. | School of Computer, Hunan University of Technology, Zhuzhou, Hunan412007, China |
The existing method of determining the size of the time series sliding window by empirical value exists some problems which should be solved urgently, such as when considering a large amount of information and high density of the original measurement data collected from industry equipment, the important information of the data cannot be maximally retained, and the calculation complexity is high. Therefore, by studying the effect of sliding window on time series similarity technology in practical application, an algorithm to determine the initial size of the sliding window is proposed. The upper and lower boundary curves with a higher fitting degree are constructed, and the trend weighting is introduced into the $ LB\_Hust $ distance calculation method to reduce the difficulty of mathematical modeling and improve the efficiency of data similarity computation.
References:
[1] |
R. Belohlavek and V. Vychodil,
Relational similarity-based model of data part 1: Foundations and query systems, Int. J. General Syst., 46 (2017), 671-751.
doi: 10.1080/03081079.2017.1357550. |
[2] |
W. Bian and D. Tao,
Max-Min distance analysis by using sequential sdp relaxation for dimension reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1037-1050.
doi: 10.1109/TPAMI.2010.189. |
[3] |
M. R. Chernick, Wavelet Methods for Time Series Analysis, Technometrics, 43 (2016), 491-508. Google Scholar |
[4] |
L. Dong, S. Liu and H. Zhang,
A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples, Pattern Recognition, 64 (2017), 374-385.
doi: 10.1016/j.patcog.2016.11.026. |
[5] |
G. Hesamian and M. G. Akbari,
A semi-parametric model for time series based on fuzzy data, IEEE Transactions on Fuzzy Systems, 99 (2018), 1-10.
doi: 10.1109/TFUZZ.2018.2791931. |
[6] |
K. Hornik, I. Feinerer and M. Kober,
Spherical k-means clustering, J. Statistical Software, 50 (2017), 1-22.
doi: 10.18637/jss.v050.i10. |
[7] |
B. Hu, P. C. Dixon and J. V. Jacobs,
Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking, J. Biomechanics, 71 (2018), 36-48.
doi: 10.1016/j.jbiomech.2018.01.005. |
[8] |
I. Güler and M. Meghdadi,
A different approach to off-line handwritten signature verification using the optimal dynamic time warping algorithm, Digital Signal Processing, 18 (2008), 940-950.
doi: 10.1016/j.dsp.2008.06.005. |
[9] |
H. Ji, C. Zhou and Z. Liu, An approximate representation method for time series symbol aggregation based on the distance between origin and end, Computer Science, 10 (2018), 135-147. Google Scholar |
[10] |
R. J. Kate,
Using dynamic time warping distances as features for improved time series classification, Data Min. Knowl. Discov., 30 (2016), 283-312.
doi: 10.1007/s10618-015-0418-x. |
[11] |
S. W. Kim, J. Kim and S. Park,
Physical database design for efficient time-series similarity search, IEICE Trans Commun., 91 (2008), 1251-1254.
doi: 10.1093/ietcom/e91-b.4.1251. |
[12] |
G. Lee, U. Yun and K. Ryu,
Sliding window based weighted maximal frequent pattern mining over data streams, Expert Syst. Appl., 41 (2014), 694-708.
doi: 10.1016/j.eswa.2013.07.094. |
[13] |
R. Li, X. Wu and S. Yang,
Dynamic on-state resistance test and evaluation of GaN power devices under hard and soft switching conditions by double and multiple pulses, IEEE Transactions on Power Electronics, 34 (2018), 1-6.
doi: 10.1109/TPEL.2018.2844302. |
[14] |
T. Luo, C. Hou and F. Nie,
Dimension reduction for non-Gaussian data by adaptive discriminative analysis, IEEE Transactions on Cybernetics, 49 (2018), 1-14.
doi: 10.1109/TCYB.2018.2789524. |
[15] |
M. D. C. Moura, E. Zio and I. D. Lins,
Failure and reliability prediction by support vector machines regression of time series data, Reliability Engineering and Syst. Safety, 96 (2017), 1527-1534.
doi: 10.1016/j.ress.2011.06.006. |
[16] |
S. J. Noh, D. Shim and M. Jeon,
Adaptive sliding-window strategy for vehicle detection in highway environments, IEEE Transactions on Intelligent Transportation Syst., 17 (2016), 323-335.
doi: 10.1109/TITS.2015.2466652. |
[17] |
N. M. Parthaláin, Q. Shen and R. Jensen,
A distance measure approach to exploring the rough set boundary region for attribute reduction, IEEE Transactions on Knowledge and Data Engineering, 22 (2010), 305-317.
doi: 10.1109/TKDE.2009.119. |
[18] |
F. Petitjean, G. Forestier and G. I. Webb,
Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm, Knowledge and Information Syst., 47 (2016), 1-26.
doi: 10.1007/s10115-015-0878-8. |
[19] |
H. Ren, M. Liu and Z. Li,
A piecewise aggregate pattern representation approach for anomaly detection in time series, Knowledge-Based Syst., 21 (2017), 213-220.
doi: 10.1016/j.knosys.2017.07.021. |
[20] |
J. W. Roh and B. K. Yi,
Efficient indexing of interval time sequences, Inform. Process. Lett., 109 (2008), 1-12.
doi: 10.1016/j.ipl.2008.08.003. |
[21] |
H. Ryang and U. Yun,
High utility pattern mining over data streams with sliding window technique, Expert Syst. Appl., 57 (2016), 214-231.
doi: 10.1016/j.eswa.2016.03.001. |
[22] |
M. J. Safari, F. A. Davani and H. Afarideh,
Discrete fourier transform method for discrimination of digital scintillation pulses in mixed neutron-gamma fields, IEEE Transactions on Nuclear Science, 63 (2016), 325-332.
doi: 10.1109/TNS.2016.2514400. |
[23] |
D. Schultz and B. Jain,
Nonsmooth analysis and subgradient methods for averaging in dynamic time warping spaces, Pattern Recognition, 74 (2018), 340-358.
doi: 10.1016/j.patcog.2017.08.012. |
[24] |
Y. Sun, J. Li and J. Liu,
An improvement of symbolic aggregate approximation distance measure for time series, Neurocomputing, 102 (2014), 189-198.
doi: 10.1016/j.neucom.2014.01.045. |
[25] |
M. Vafaeipour, O. Rahbari and M. A. Rosen,
Application of sliding window technique for prediction of wind velocity time series, Inter. J. Energy and Environmental Engineering, 5 (2014), 105-116.
doi: 10.1007/s40095-014-0105-5. |
[26] |
Y. Xue, X. Mei and Y. Zhi, Method of subway health status recognition based on time series data mining, Information Sciences, 38 (2018), 905-910. Google Scholar |
[27] |
G. Yuan, P. Sun and J. Zhao,
A review of moving object trajectory clustering algorithms, Artificial Intelligence Review, 47 (2017), 1-22.
doi: 10.1007/s10462-016-9477-7. |
[28] |
R. Yao, G. Lin and Q. Shi,
Efficient dense labelling of human activity sequences from wearables using fully convolutional networks, Pattern Recognition, 78 (2017), 221-232.
doi: 10.1016/j.patcog.2017.12.024. |
[29] |
S. Yue, Y. Li and Q. Yang,
Comparative analysis of core loss calculation methods for magnetic materials under no sinusoidal excitations, IEEE Transactions on Magnetics, 54 (2018), 1-5.
doi: 10.1109/TMAG.2018.2842064. |
[30] |
U. Yun, D. Kim, H. Ryang, G. Lee and K. Lee,
Mining recent high average utility patterns based on sliding window from stream data, J. Intelligent and Fuzzy Syst., 30 (2016), 3605-3617.
doi: 10.3233/IFS-162106. |
[31] |
U. Yun, D. Kim, E. Yoon and H. Fujita,
Damped window based high average utility pattern mining over data streams, Knowl.-Based Syst., 144 (2018), 188-205.
doi: 10.1016/j.knosys.2017.12.029. |
[32] |
U. Yun and G. Lee,
Sliding window based weighted erasable stream pattern mining for stream data applications, Future Generation Comp. Syst., 59 (2016), 1-20.
doi: 10.1016/j.future.2015.12.012. |
[33] |
U. Yun, G. Lee and K. Ryu,
Mining maximal frequent patterns by considering weight conditions over data streams, Knowl.-Based Syst., 55 (2014), 49-65.
doi: 10.1016/j.knosys.2013.10.011. |
[34] |
U. Yun, G. Lee and E. Yoon,
Efficient high utility pattern mining for establishing manufacturing plans with sliding window control, IEEE Trans. Industrial Electronics, 64 (2017), 7239-7249.
doi: 10.1109/TIE.2017.2682782. |
[35] |
M. Zhu, D. G. M. Mitchell and M. Lentmaier,
Braided convolutional codes with sliding window decoding, IEEE Trans. on Communications, 65 (2017), 3645-3658.
doi: 10.1109/TCOMM.2017.2707073. |
show all references
References:
[1] |
R. Belohlavek and V. Vychodil,
Relational similarity-based model of data part 1: Foundations and query systems, Int. J. General Syst., 46 (2017), 671-751.
doi: 10.1080/03081079.2017.1357550. |
[2] |
W. Bian and D. Tao,
Max-Min distance analysis by using sequential sdp relaxation for dimension reduction, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 1037-1050.
doi: 10.1109/TPAMI.2010.189. |
[3] |
M. R. Chernick, Wavelet Methods for Time Series Analysis, Technometrics, 43 (2016), 491-508. Google Scholar |
[4] |
L. Dong, S. Liu and H. Zhang,
A method of anomaly detection and fault diagnosis with online adaptive learning under small training samples, Pattern Recognition, 64 (2017), 374-385.
doi: 10.1016/j.patcog.2016.11.026. |
[5] |
G. Hesamian and M. G. Akbari,
A semi-parametric model for time series based on fuzzy data, IEEE Transactions on Fuzzy Systems, 99 (2018), 1-10.
doi: 10.1109/TFUZZ.2018.2791931. |
[6] |
K. Hornik, I. Feinerer and M. Kober,
Spherical k-means clustering, J. Statistical Software, 50 (2017), 1-22.
doi: 10.18637/jss.v050.i10. |
[7] |
B. Hu, P. C. Dixon and J. V. Jacobs,
Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking, J. Biomechanics, 71 (2018), 36-48.
doi: 10.1016/j.jbiomech.2018.01.005. |
[8] |
I. Güler and M. Meghdadi,
A different approach to off-line handwritten signature verification using the optimal dynamic time warping algorithm, Digital Signal Processing, 18 (2008), 940-950.
doi: 10.1016/j.dsp.2008.06.005. |
[9] |
H. Ji, C. Zhou and Z. Liu, An approximate representation method for time series symbol aggregation based on the distance between origin and end, Computer Science, 10 (2018), 135-147. Google Scholar |
[10] |
R. J. Kate,
Using dynamic time warping distances as features for improved time series classification, Data Min. Knowl. Discov., 30 (2016), 283-312.
doi: 10.1007/s10618-015-0418-x. |
[11] |
S. W. Kim, J. Kim and S. Park,
Physical database design for efficient time-series similarity search, IEICE Trans Commun., 91 (2008), 1251-1254.
doi: 10.1093/ietcom/e91-b.4.1251. |
[12] |
G. Lee, U. Yun and K. Ryu,
Sliding window based weighted maximal frequent pattern mining over data streams, Expert Syst. Appl., 41 (2014), 694-708.
doi: 10.1016/j.eswa.2013.07.094. |
[13] |
R. Li, X. Wu and S. Yang,
Dynamic on-state resistance test and evaluation of GaN power devices under hard and soft switching conditions by double and multiple pulses, IEEE Transactions on Power Electronics, 34 (2018), 1-6.
doi: 10.1109/TPEL.2018.2844302. |
[14] |
T. Luo, C. Hou and F. Nie,
Dimension reduction for non-Gaussian data by adaptive discriminative analysis, IEEE Transactions on Cybernetics, 49 (2018), 1-14.
doi: 10.1109/TCYB.2018.2789524. |
[15] |
M. D. C. Moura, E. Zio and I. D. Lins,
Failure and reliability prediction by support vector machines regression of time series data, Reliability Engineering and Syst. Safety, 96 (2017), 1527-1534.
doi: 10.1016/j.ress.2011.06.006. |
[16] |
S. J. Noh, D. Shim and M. Jeon,
Adaptive sliding-window strategy for vehicle detection in highway environments, IEEE Transactions on Intelligent Transportation Syst., 17 (2016), 323-335.
doi: 10.1109/TITS.2015.2466652. |
[17] |
N. M. Parthaláin, Q. Shen and R. Jensen,
A distance measure approach to exploring the rough set boundary region for attribute reduction, IEEE Transactions on Knowledge and Data Engineering, 22 (2010), 305-317.
doi: 10.1109/TKDE.2009.119. |
[18] |
F. Petitjean, G. Forestier and G. I. Webb,
Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm, Knowledge and Information Syst., 47 (2016), 1-26.
doi: 10.1007/s10115-015-0878-8. |
[19] |
H. Ren, M. Liu and Z. Li,
A piecewise aggregate pattern representation approach for anomaly detection in time series, Knowledge-Based Syst., 21 (2017), 213-220.
doi: 10.1016/j.knosys.2017.07.021. |
[20] |
J. W. Roh and B. K. Yi,
Efficient indexing of interval time sequences, Inform. Process. Lett., 109 (2008), 1-12.
doi: 10.1016/j.ipl.2008.08.003. |
[21] |
H. Ryang and U. Yun,
High utility pattern mining over data streams with sliding window technique, Expert Syst. Appl., 57 (2016), 214-231.
doi: 10.1016/j.eswa.2016.03.001. |
[22] |
M. J. Safari, F. A. Davani and H. Afarideh,
Discrete fourier transform method for discrimination of digital scintillation pulses in mixed neutron-gamma fields, IEEE Transactions on Nuclear Science, 63 (2016), 325-332.
doi: 10.1109/TNS.2016.2514400. |
[23] |
D. Schultz and B. Jain,
Nonsmooth analysis and subgradient methods for averaging in dynamic time warping spaces, Pattern Recognition, 74 (2018), 340-358.
doi: 10.1016/j.patcog.2017.08.012. |
[24] |
Y. Sun, J. Li and J. Liu,
An improvement of symbolic aggregate approximation distance measure for time series, Neurocomputing, 102 (2014), 189-198.
doi: 10.1016/j.neucom.2014.01.045. |
[25] |
M. Vafaeipour, O. Rahbari and M. A. Rosen,
Application of sliding window technique for prediction of wind velocity time series, Inter. J. Energy and Environmental Engineering, 5 (2014), 105-116.
doi: 10.1007/s40095-014-0105-5. |
[26] |
Y. Xue, X. Mei and Y. Zhi, Method of subway health status recognition based on time series data mining, Information Sciences, 38 (2018), 905-910. Google Scholar |
[27] |
G. Yuan, P. Sun and J. Zhao,
A review of moving object trajectory clustering algorithms, Artificial Intelligence Review, 47 (2017), 1-22.
doi: 10.1007/s10462-016-9477-7. |
[28] |
R. Yao, G. Lin and Q. Shi,
Efficient dense labelling of human activity sequences from wearables using fully convolutional networks, Pattern Recognition, 78 (2017), 221-232.
doi: 10.1016/j.patcog.2017.12.024. |
[29] |
S. Yue, Y. Li and Q. Yang,
Comparative analysis of core loss calculation methods for magnetic materials under no sinusoidal excitations, IEEE Transactions on Magnetics, 54 (2018), 1-5.
doi: 10.1109/TMAG.2018.2842064. |
[30] |
U. Yun, D. Kim, H. Ryang, G. Lee and K. Lee,
Mining recent high average utility patterns based on sliding window from stream data, J. Intelligent and Fuzzy Syst., 30 (2016), 3605-3617.
doi: 10.3233/IFS-162106. |
[31] |
U. Yun, D. Kim, E. Yoon and H. Fujita,
Damped window based high average utility pattern mining over data streams, Knowl.-Based Syst., 144 (2018), 188-205.
doi: 10.1016/j.knosys.2017.12.029. |
[32] |
U. Yun and G. Lee,
Sliding window based weighted erasable stream pattern mining for stream data applications, Future Generation Comp. Syst., 59 (2016), 1-20.
doi: 10.1016/j.future.2015.12.012. |
[33] |
U. Yun, G. Lee and K. Ryu,
Mining maximal frequent patterns by considering weight conditions over data streams, Knowl.-Based Syst., 55 (2014), 49-65.
doi: 10.1016/j.knosys.2013.10.011. |
[34] |
U. Yun, G. Lee and E. Yoon,
Efficient high utility pattern mining for establishing manufacturing plans with sliding window control, IEEE Trans. Industrial Electronics, 64 (2017), 7239-7249.
doi: 10.1109/TIE.2017.2682782. |
[35] |
M. Zhu, D. G. M. Mitchell and M. Lentmaier,
Braided convolutional codes with sliding window decoding, IEEE Trans. on Communications, 65 (2017), 3645-3658.
doi: 10.1109/TCOMM.2017.2707073. |












Type | Items | Status |
1 | 1-100 | Normal |
2 | 101-200 | Cyclic |
3 | 201-300 | Increasing trend |
4 | 301-400 | Decreasing trend |
5 | 401-500 | Upward shift |
6 | 501-600 | Downward shift |
Type | Items | Status |
1 | 1-100 | Normal |
2 | 101-200 | Cyclic |
3 | 201-300 | Increasing trend |
4 | 301-400 | Decreasing trend |
5 | 401-500 | Upward shift |
6 | 501-600 | Downward shift |
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
2 | 49.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3 | 55.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4 | 54.8 | 60.6 | - | - | - | - | - | - | - | - | - | - | - | - | - |
5 | 58.7 | 61.2 | - | - | - | - | - | - | - | - | - | - | - | - | - |
6 | 64.3 | 65.3 | 60.0 | - | - | - | - | - | - | - | - | - | - | - | - |
7 | 62.5 | 63.9 | 61.3 | - | - | - | - | - | - | - | - | - | - | - | - |
8 | 64.8 | 65.6 | 64.0 | 62.6 | - | - | - | - | - | - | - | - | - | - | - |
9 | 62.5 | 61.2 | 63.5 | 62.3 | - | - | - | - | - | - | - | - | - | - | - |
10 | 63.4 | 63.9 | 59.1 | 62.9 | 60.8 | - | - | - | - | - | - | - | - | - | - |
11 | 58.0 | 61.9 | 62.1 | 58.5 | 60.1 | - | - | - | - | - | - | - | - | - | - |
12 | 61.3 | 61.2 | 58.3 | 61.1 | 60.9 | 59.1 | - | - | - | - | - | - | - | - | - |
13 | 60.2 | 59.9 | 59.1 | 49.3 | 58.2 | 49.3 | - | - | - | - | - | - | - | - | - |
14 | 49.9 | 59.6 | 60.2 | 60.8 | 59.1 | 60.1 | 61.7 | - | - | - | - | - | - | - | - |
15 | 55.9 | 56.2 | 53.2 | 48.2 | 60.2 | 49.2 | 58.7 | - | - | - | - | - | - | - | - |
16 | 60.9 | 55.2 | 58.3 | 58.0 | 52.1 | 50.0 | 56.1 | 49.0 | - | - | - | - | - | - | - |
17 | 49.2 | 53.1 | 54.4 | 55.2 | 60.8 | 59.4 | 51.7 | 53.3 | - | - | - | - | - | - | - |
18 | 53.7 | 54.4 | 52.0 | 52.3 | 52.8 | 60.1 | 59.2 | 49.2 | 49.2 | - | - | - | - | - | - |
19 | 58.3 | 60.8 | 55.1 | 50.3 | 58.7 | 58.0 | 58.1 | 53.0 | 51.9 | - | - | - | - | - | - |
20 | 50.7 | 53.3 | 55.8 | 50.1 | 42.3 | 45.7 | 50.0 | 51.2 | 51.2 | 46.3 | - | - | - | - | - |
21 | 49.6 | 50.2 | 46.9 | 46.5 | 47.2 | 47.1 | 47.5 | 46.0 | 48.2 | 43.9 | - | - | - | - | - |
22 | 51.3 | 49.9 | 48.2 | 46.7 | 50.0 | 45.0 | 40.0 | 39.2 | 39.5 | 40.7 | 39.1 | - | - | - | - |
23 | 39.9 | 54.2 | 50.0 | 49.8 | 49.0 | 36.8 | 36.5 | 38.1 | 42.5 | 43.9 | 35.9 | - | - | - | - |
24 | 46.8 | 51.9 | 48.3 | 45.0 | 38.2 | 42.7 | 39.4 | 50.2 | 41.9 | 38.4 | 43.3 | 51.8 | - | - | - |
25 | 51.6 | 40.0 | 58.7 | 43.1 | 40.0 | 39.4 | 35.0 | 45.3 | 45.9 | 41.2 | 38.1 | 40.9 | - | - | - |
26 | 47.3 | 48.6 | 50.3 | 39.6 | 42.6 | 55.2 | 42.0 | 36.1 | 35.0 | 42.0 | 43.8 | 39.5 | 47.8 | - | - |
27 | 47.5 | 51.3 | 40.0 | 41.6 | 39.5 | 35.0 | 50.0 | 49.2 | 39.4 | 38.4 | 35.6 | 39.2 | 49.9 | - | - |
28 | 45.0 | 40.4 | 38.4 | 35.0 | 35.7 | 46.2 | 50.6 | 45.2 | 39.1 | 39.6 | 42.1 | 48.2 | 40.0 | 38.9 | - |
29 | 50.1 | 48.3 | 40.2 | 41.6 | 35.9 | 36.1 | 40.3 | 39.4 | 50.1 | 46.3 | 39.6 | 35.9 | 35.9 | 35.0 | - |
30 | 42.2 | 49.8 | 45.0 | 39.2 | 40.0 | 38.9 | 40.4 | 39.3 | 37.5 | 38.6 | 36.3 | 36.9 | 35.0 | 36.2 | 35.2 |
![]() |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
2 | 49.1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3 | 55.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4 | 54.8 | 60.6 | - | - | - | - | - | - | - | - | - | - | - | - | - |
5 | 58.7 | 61.2 | - | - | - | - | - | - | - | - | - | - | - | - | - |
6 | 64.3 | 65.3 | 60.0 | - | - | - | - | - | - | - | - | - | - | - | - |
7 | 62.5 | 63.9 | 61.3 | - | - | - | - | - | - | - | - | - | - | - | - |
8 | 64.8 | 65.6 | 64.0 | 62.6 | - | - | - | - | - | - | - | - | - | - | - |
9 | 62.5 | 61.2 | 63.5 | 62.3 | - | - | - | - | - | - | - | - | - | - | - |
10 | 63.4 | 63.9 | 59.1 | 62.9 | 60.8 | - | - | - | - | - | - | - | - | - | - |
11 | 58.0 | 61.9 | 62.1 | 58.5 | 60.1 | - | - | - | - | - | - | - | - | - | - |
12 | 61.3 | 61.2 | 58.3 | 61.1 | 60.9 | 59.1 | - | - | - | - | - | - | - | - | - |
13 | 60.2 | 59.9 | 59.1 | 49.3 | 58.2 | 49.3 | - | - | - | - | - | - | - | - | - |
14 | 49.9 | 59.6 | 60.2 | 60.8 | 59.1 | 60.1 | 61.7 | - | - | - | - | - | - | - | - |
15 | 55.9 | 56.2 | 53.2 | 48.2 | 60.2 | 49.2 | 58.7 | - | - | - | - | - | - | - | - |
16 | 60.9 | 55.2 | 58.3 | 58.0 | 52.1 | 50.0 | 56.1 | 49.0 | - | - | - | - | - | - | - |
17 | 49.2 | 53.1 | 54.4 | 55.2 | 60.8 | 59.4 | 51.7 | 53.3 | - | - | - | - | - | - | - |
18 | 53.7 | 54.4 | 52.0 | 52.3 | 52.8 | 60.1 | 59.2 | 49.2 | 49.2 | - | - | - | - | - | - |
19 | 58.3 | 60.8 | 55.1 | 50.3 | 58.7 | 58.0 | 58.1 | 53.0 | 51.9 | - | - | - | - | - | - |
20 | 50.7 | 53.3 | 55.8 | 50.1 | 42.3 | 45.7 | 50.0 | 51.2 | 51.2 | 46.3 | - | - | - | - | - |
21 | 49.6 | 50.2 | 46.9 | 46.5 | 47.2 | 47.1 | 47.5 | 46.0 | 48.2 | 43.9 | - | - | - | - | - |
22 | 51.3 | 49.9 | 48.2 | 46.7 | 50.0 | 45.0 | 40.0 | 39.2 | 39.5 | 40.7 | 39.1 | - | - | - | - |
23 | 39.9 | 54.2 | 50.0 | 49.8 | 49.0 | 36.8 | 36.5 | 38.1 | 42.5 | 43.9 | 35.9 | - | - | - | - |
24 | 46.8 | 51.9 | 48.3 | 45.0 | 38.2 | 42.7 | 39.4 | 50.2 | 41.9 | 38.4 | 43.3 | 51.8 | - | - | - |
25 | 51.6 | 40.0 | 58.7 | 43.1 | 40.0 | 39.4 | 35.0 | 45.3 | 45.9 | 41.2 | 38.1 | 40.9 | - | - | - |
26 | 47.3 | 48.6 | 50.3 | 39.6 | 42.6 | 55.2 | 42.0 | 36.1 | 35.0 | 42.0 | 43.8 | 39.5 | 47.8 | - | - |
27 | 47.5 | 51.3 | 40.0 | 41.6 | 39.5 | 35.0 | 50.0 | 49.2 | 39.4 | 38.4 | 35.6 | 39.2 | 49.9 | - | - |
28 | 45.0 | 40.4 | 38.4 | 35.0 | 35.7 | 46.2 | 50.6 | 45.2 | 39.1 | 39.6 | 42.1 | 48.2 | 40.0 | 38.9 | - |
29 | 50.1 | 48.3 | 40.2 | 41.6 | 35.9 | 36.1 | 40.3 | 39.4 | 50.1 | 46.3 | 39.6 | 35.9 | 35.9 | 35.0 | - |
30 | 42.2 | 49.8 | 45.0 | 39.2 | 40.0 | 38.9 | 40.4 | 39.3 | 37.5 | 38.6 | 36.3 | 36.9 | 35.0 | 36.2 | 35.2 |
Dataset | Samples | Categories | Attributes |
temperature | 148 | 3 | 2 |
pressure | 169 | 4 | 12 |
position | 327 | 10 | 17 |
concentration | 112 | 6 | 16 |
flow rate | 236 | 5 | 7 |
Dataset | Samples | Categories | Attributes |
temperature | 148 | 3 | 2 |
pressure | 169 | 4 | 12 |
position | 327 | 10 | 17 |
concentration | 112 | 6 | 16 |
flow rate | 236 | 5 | 7 |
Dataset | The optimal value | Average precision | ||||
test set | training set | |||||
temperature | 8 | 0.6 | 0.4 | |||
pressure | 9 | 0.6 | 0.4 | |||
position | 8 | 0.6 | 0.4 | |||
concentration | 8 | 0.6 | 0.4 | |||
flow rate | 8 | 0.6 | 0.4 |
Dataset | The optimal value | Average precision | ||||
test set | training set | |||||
temperature | 8 | 0.6 | 0.4 | |||
pressure | 9 | 0.6 | 0.4 | |||
position | 8 | 0.6 | 0.4 | |||
concentration | 8 | 0.6 | 0.4 | |||
flow rate | 8 | 0.6 | 0.4 |
[1] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
[2] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[3] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[4] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[5] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[6] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061 |
[7] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[8] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[9] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[10] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[11] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001 |
[12] |
Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020051 |
[13] |
Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020119 |
[14] |
Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323 |
[15] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[16] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[17] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[18] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[19] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[20] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]