January  2021, 17(1): 261-277. doi: 10.3934/jimo.2019110

Optimal financing and operational decisions of capital-constrained manufacturer under green credit and subsidy

1. 

Department of Information Management and Decision Sciences, School of Business Administration, Northeastern University, Shenyang 110169, China

2. 

State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China

* Corresponding author: ZHI-PING FAN

Received  November 2018 Revised  March 2019 Published  January 2021 Early access  September 2019

Fund Project: The study is supported in part by the National Natural Science Foundation of China (Project No. 71871049, 71772034) and the 111 Project (B16009)

To stimulate the capital-constrained manufacturer to produce green products, the government often adopts two incentive mechanisms: green credit (i.e., subsidy offered directly to bank) and subsidy (i.e., subsidy offered directly to manufacturer). This paper examines the optimal interest rate of the bank, and the optimal product green degree and sales price of the manufacturer under the two mechanisms, respectively. Furthermore, we investigate the effects of these mechanisms on the optimal decisions, the profits of players, the social welfare and the environmental benefits. Several important results are obtained. First, when the total government subsidy is low, the green credit mechanism can bring the higher green degree, product sales price and demand, as well as higher profits for the bank and manufacturer, rather than the subsidy mechanism. Otherwise, the result is opposite. Second, the government should adopt the green credit mechanism to support the manufacturer to develop green products when the budget is limited and relatively low. If the government budget is sufficient, the subsidy mechanism is the best choice, which can bring higher economic and environmental benefits.

Citation: Shuai Huang, Zhi-Ping Fan, Xiaohuan Wang. Optimal financing and operational decisions of capital-constrained manufacturer under green credit and subsidy. Journal of Industrial and Management Optimization, 2021, 17 (1) : 261-277. doi: 10.3934/jimo.2019110
References:
[1]

M. Aizawa and C. F. Yang, Green credit, green stimulus, green revolution? China's mobilization of banks for environmental cleanup, J. Environ. Dev., 19 (2010), 119-144.  doi: 10.1177/1070496510371192.

[2]

B. AvciK. Girotra and S. Netessine, Electric vehicles with a battery switching station: Adoption and environmental impact, Manage. Sci., 61 (2014), 772-794. 

[3]

G. B. BiM. Y. JinL. Y. Ling and F. Yang, Environmental subsidy and the choice of green technology in the presence of green consumers, Ann. Oper. Res., 255 (2017), 547-568.  doi: 10.1007/s10479-016-2106-7.

[4]

M. Burkart and T. Ellingsen, In-kind finance: A theory of trade credit, Am. Econ. Rev., 94 (2004), 569-590.  doi: 10.1257/0002828041464579.

[5]

J. A. Buzacott and R. Q. Zhang, Inventory management with asset-based financing, Manage. Sci., 50 (2004), 1274-1292.  doi: 10.1287/mnsc.1040.0278.

[6]

G. P. Cachon, Retail store density and the cost of greenhouse gas emissions, Manage. Sci., 60 (2014), 1907-1925. 

[7]

E. CaoL. X. Du and J. H. Ruan, Financing preferences and performance for an emission-dependent supply chain: Supplier vs. bank, Int. J. Prod. Econ., 208 (2019), 383-399.  doi: 10.1016/j.ijpe.2018.08.001.

[8]

Y.-K. Che and I. Gale, The optimal mechanism for selling to a budget-constrained buyer, J. Econ. Theory, 92 (2000), 198-233.  doi: 10.1006/jeth.1999.2639.

[9]

M. C. CohenR. Lobel and G. Perakis, The impact of demand uncertainty on consumer subsidy for green technology adoption, Manage. Sci., 62 (2016), 1235-1258. 

[10]

S. DuF. MaZ. FuL. Zhu and J. Zhang, Game-theoretic analysis for an emission-dependent supply chain in a `cap-and-trade' system, Ann. Oper. Res., 228 (2015), 135-149.  doi: 10.1007/s10479-011-0964-6.

[11]

J. Z. GaoZ. D. XiaoB. B. Cao and Q. F. Chai, Green supply chain planning considering consumer's transportation process, Transp. Res. Pt. e-Logist. Transp. Rev., 109 (2018), 311-330.  doi: 10.1016/j.tre.2017.12.001.

[12]

A. Hafezalkotob, Direct and indirect intervention schemas of government in the competition between green and non-green supply chains, J. Clean Prod., 170 (2018), 753-772.  doi: 10.1016/j.jclepro.2017.09.124.

[13]

J. Hall, Environmental supply chain dynamics, J. Clean Prod., 8 (2000), 455-471.  doi: 10.1016/S0959-6526(00)00013-5.

[14]

S. HuangZ.-P. Fan and X. H. Wang, The impact of transportation fee on the performance of capital-constrained supply chain under 3PL financing service, Comput. Ind. Eng., 130 (2019), 358-369.  doi: 10.1016/j.cie.2019.02.048.

[15]

B. JingX. F. Chen and G. S. Cai, Equilibrium financing in a distribution channel with capital constraint, Prod. Oper. Manag., 21 (2012), 1090-1101.  doi: 10.1111/j.1937-5956.2012.01328.x.

[16]

P. R. KleindorferK. Singhal and L. N. Van Wassenhove, Sustainable operations management, Prod. Oper. Manag., 14 (2005), 482-492.  doi: 10.1111/j.1937-5956.2005.tb00235.x.

[17]

P. Kouvelis and W. H. Zhao, The newsvendor problem and price-only contract when bankruptcy costs exist, Prod. Oper. Manag., 20 (2011), 921-936.  doi: 10.1111/j.1937-5956.2010.01211.x.

[18]

P. Kouvelis and W. H. Zhao, Supply chain contract design under financial constraints and bankruptcy costs, Manage. Sci., 62 (2016), 2149-2455.  doi: 10.1287/mnsc.2015.2248.

[19]

V. Krishnan and W. Zhu, Designing a family of development-intensive products, Manage. Sci., 52 (2006), 813-825.  doi: 10.1287/mnsc.1050.0492.

[20]

J.-Y. LiuY. XiaY. FanS.-M. Lin and J. Wu, Assessment of a green credit policy aimed at energy-intensive industries in China based on a financial CGE model, J. Clean Prod., 163 (2017), 293-302.  doi: 10.1016/j.jclepro.2015.10.111.

[21]

R. Mahmoudi and M. Rasti-Barzoki, Sustainable supply chains under government intervention with a real-world case study: An evolutionary game theoretic approach, Comput. Ind. Eng., 116 (2018), 130-143.  doi: 10.1016/j.cie.2017.12.028.

[22]

M. Parlar and Z. K. Weng, Balancing desirable but conflicting objectives in the newsvendor problem, IIE Trans., 35 (2003), 131-142.  doi: 10.1080/07408170304380.

[23]

H. PeuraS. A. Yang and G. Lai, Trade credit in competition: A horizontal benefit, M & SOM-Manuf. Serv. Oper. Manag., 19 (2017), 165-335.  doi: 10.1287/msom.2016.0608.

[24]

G. Raz and A. Ovchinnikov, Coordinating pricing and supply of public interest goods using government rebates and subsidy, IEEE Trans. Eng. Manage., 62 (2015), 65-79.  doi: 10.1109/TEM.2014.2380999.

[25]

H. H. Song and X. X. Gao, Green supply chain game model and analysis under revenue-sharing contract, J. Clean Prod., 170 (2018), 183-192.  doi: 10.1016/j.jclepro.2017.09.138.

[26]

C. S. Tang and S. Zhou, Research advances in environmentally and socially sustainable operations, Eur. J. Oper. Res., 223 (2012), 585-594.  doi: 10.1016/j.ejor.2012.07.030.

[27]

Y.-C. TsaoP.-L. LeeC.-H. Chen and Z.-W. Liao, Sustainable newsvendor models under trade credit, J. Clean Prod., 141 (2017), 1478-1491.  doi: 10.1016/j.jclepro.2016.09.228.

[28]

S.-C. Tseng and S.-W. Hung, A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management, J. Environ. Manage., 133 (2014), 315-322.  doi: 10.1016/j.jenvman.2013.11.023.

[29]

K. WangR. Q. Zhao and J. Peng, Trade credit contracting under asymmetric credit default risk: Screening, checking or insurance, Eur. J. Oper. Res., 266 (2018), 554-568.  doi: 10.1016/j.ejor.2017.10.004.

[30]

D. D. Wu, L. Yang and D. L. Olson, Green supply chain management under capital constraint, Int. J. Prod. Econ., article in press. doi: 10.1016/j.ijpe.2018.09.016.

[31]

N. Yan and B. Sun, Comparative analysis of supply chain financing decisions between different financing modes, J. Ind. Manag. Optim., 11 (2015), 1073-1087.  doi: 10.3934/jimo.2015.11.1073.

[32]

D. Yang and T. Xiao, Pricing and green level decisions of a green supply chain with government interventions under fuzzy uncertainties, J. Clean Prod., 149 (2017), 1174-1187. 

[33]

D.-X. YangZ.-Y. ChenY.-C. Yang and P.-Y. Nie, Green financial policies and capital flows, Physica A, 522 (2019), 135-146.  doi: 10.1016/j.physa.2019.01.126.

[34]

H. YangW. Zhuo and L. Shao, Equilibrium evolution in a two-echelon supply chain with financially constrained retailers: The impact of equity financing, Int. J. Prod. Econ., 185 (2017), 139-149. 

[35]

L. H. ZhangJ. G. Wang and J. X. You, Consumer environmental awareness and channel coordination with two substitutable products, Eur. J. Oper. Res., 241 (2015), 63-73.  doi: 10.1016/j.ejor.2014.07.043.

[36]

W. G. Zhu and Y. J. He, Green product design in supply chains under competition, Eur. J. Oper. Res., 258 (2017), 165-180.  doi: 10.1016/j.ejor.2016.08.053.

show all references

References:
[1]

M. Aizawa and C. F. Yang, Green credit, green stimulus, green revolution? China's mobilization of banks for environmental cleanup, J. Environ. Dev., 19 (2010), 119-144.  doi: 10.1177/1070496510371192.

[2]

B. AvciK. Girotra and S. Netessine, Electric vehicles with a battery switching station: Adoption and environmental impact, Manage. Sci., 61 (2014), 772-794. 

[3]

G. B. BiM. Y. JinL. Y. Ling and F. Yang, Environmental subsidy and the choice of green technology in the presence of green consumers, Ann. Oper. Res., 255 (2017), 547-568.  doi: 10.1007/s10479-016-2106-7.

[4]

M. Burkart and T. Ellingsen, In-kind finance: A theory of trade credit, Am. Econ. Rev., 94 (2004), 569-590.  doi: 10.1257/0002828041464579.

[5]

J. A. Buzacott and R. Q. Zhang, Inventory management with asset-based financing, Manage. Sci., 50 (2004), 1274-1292.  doi: 10.1287/mnsc.1040.0278.

[6]

G. P. Cachon, Retail store density and the cost of greenhouse gas emissions, Manage. Sci., 60 (2014), 1907-1925. 

[7]

E. CaoL. X. Du and J. H. Ruan, Financing preferences and performance for an emission-dependent supply chain: Supplier vs. bank, Int. J. Prod. Econ., 208 (2019), 383-399.  doi: 10.1016/j.ijpe.2018.08.001.

[8]

Y.-K. Che and I. Gale, The optimal mechanism for selling to a budget-constrained buyer, J. Econ. Theory, 92 (2000), 198-233.  doi: 10.1006/jeth.1999.2639.

[9]

M. C. CohenR. Lobel and G. Perakis, The impact of demand uncertainty on consumer subsidy for green technology adoption, Manage. Sci., 62 (2016), 1235-1258. 

[10]

S. DuF. MaZ. FuL. Zhu and J. Zhang, Game-theoretic analysis for an emission-dependent supply chain in a `cap-and-trade' system, Ann. Oper. Res., 228 (2015), 135-149.  doi: 10.1007/s10479-011-0964-6.

[11]

J. Z. GaoZ. D. XiaoB. B. Cao and Q. F. Chai, Green supply chain planning considering consumer's transportation process, Transp. Res. Pt. e-Logist. Transp. Rev., 109 (2018), 311-330.  doi: 10.1016/j.tre.2017.12.001.

[12]

A. Hafezalkotob, Direct and indirect intervention schemas of government in the competition between green and non-green supply chains, J. Clean Prod., 170 (2018), 753-772.  doi: 10.1016/j.jclepro.2017.09.124.

[13]

J. Hall, Environmental supply chain dynamics, J. Clean Prod., 8 (2000), 455-471.  doi: 10.1016/S0959-6526(00)00013-5.

[14]

S. HuangZ.-P. Fan and X. H. Wang, The impact of transportation fee on the performance of capital-constrained supply chain under 3PL financing service, Comput. Ind. Eng., 130 (2019), 358-369.  doi: 10.1016/j.cie.2019.02.048.

[15]

B. JingX. F. Chen and G. S. Cai, Equilibrium financing in a distribution channel with capital constraint, Prod. Oper. Manag., 21 (2012), 1090-1101.  doi: 10.1111/j.1937-5956.2012.01328.x.

[16]

P. R. KleindorferK. Singhal and L. N. Van Wassenhove, Sustainable operations management, Prod. Oper. Manag., 14 (2005), 482-492.  doi: 10.1111/j.1937-5956.2005.tb00235.x.

[17]

P. Kouvelis and W. H. Zhao, The newsvendor problem and price-only contract when bankruptcy costs exist, Prod. Oper. Manag., 20 (2011), 921-936.  doi: 10.1111/j.1937-5956.2010.01211.x.

[18]

P. Kouvelis and W. H. Zhao, Supply chain contract design under financial constraints and bankruptcy costs, Manage. Sci., 62 (2016), 2149-2455.  doi: 10.1287/mnsc.2015.2248.

[19]

V. Krishnan and W. Zhu, Designing a family of development-intensive products, Manage. Sci., 52 (2006), 813-825.  doi: 10.1287/mnsc.1050.0492.

[20]

J.-Y. LiuY. XiaY. FanS.-M. Lin and J. Wu, Assessment of a green credit policy aimed at energy-intensive industries in China based on a financial CGE model, J. Clean Prod., 163 (2017), 293-302.  doi: 10.1016/j.jclepro.2015.10.111.

[21]

R. Mahmoudi and M. Rasti-Barzoki, Sustainable supply chains under government intervention with a real-world case study: An evolutionary game theoretic approach, Comput. Ind. Eng., 116 (2018), 130-143.  doi: 10.1016/j.cie.2017.12.028.

[22]

M. Parlar and Z. K. Weng, Balancing desirable but conflicting objectives in the newsvendor problem, IIE Trans., 35 (2003), 131-142.  doi: 10.1080/07408170304380.

[23]

H. PeuraS. A. Yang and G. Lai, Trade credit in competition: A horizontal benefit, M & SOM-Manuf. Serv. Oper. Manag., 19 (2017), 165-335.  doi: 10.1287/msom.2016.0608.

[24]

G. Raz and A. Ovchinnikov, Coordinating pricing and supply of public interest goods using government rebates and subsidy, IEEE Trans. Eng. Manage., 62 (2015), 65-79.  doi: 10.1109/TEM.2014.2380999.

[25]

H. H. Song and X. X. Gao, Green supply chain game model and analysis under revenue-sharing contract, J. Clean Prod., 170 (2018), 183-192.  doi: 10.1016/j.jclepro.2017.09.138.

[26]

C. S. Tang and S. Zhou, Research advances in environmentally and socially sustainable operations, Eur. J. Oper. Res., 223 (2012), 585-594.  doi: 10.1016/j.ejor.2012.07.030.

[27]

Y.-C. TsaoP.-L. LeeC.-H. Chen and Z.-W. Liao, Sustainable newsvendor models under trade credit, J. Clean Prod., 141 (2017), 1478-1491.  doi: 10.1016/j.jclepro.2016.09.228.

[28]

S.-C. Tseng and S.-W. Hung, A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management, J. Environ. Manage., 133 (2014), 315-322.  doi: 10.1016/j.jenvman.2013.11.023.

[29]

K. WangR. Q. Zhao and J. Peng, Trade credit contracting under asymmetric credit default risk: Screening, checking or insurance, Eur. J. Oper. Res., 266 (2018), 554-568.  doi: 10.1016/j.ejor.2017.10.004.

[30]

D. D. Wu, L. Yang and D. L. Olson, Green supply chain management under capital constraint, Int. J. Prod. Econ., article in press. doi: 10.1016/j.ijpe.2018.09.016.

[31]

N. Yan and B. Sun, Comparative analysis of supply chain financing decisions between different financing modes, J. Ind. Manag. Optim., 11 (2015), 1073-1087.  doi: 10.3934/jimo.2015.11.1073.

[32]

D. Yang and T. Xiao, Pricing and green level decisions of a green supply chain with government interventions under fuzzy uncertainties, J. Clean Prod., 149 (2017), 1174-1187. 

[33]

D.-X. YangZ.-Y. ChenY.-C. Yang and P.-Y. Nie, Green financial policies and capital flows, Physica A, 522 (2019), 135-146.  doi: 10.1016/j.physa.2019.01.126.

[34]

H. YangW. Zhuo and L. Shao, Equilibrium evolution in a two-echelon supply chain with financially constrained retailers: The impact of equity financing, Int. J. Prod. Econ., 185 (2017), 139-149. 

[35]

L. H. ZhangJ. G. Wang and J. X. You, Consumer environmental awareness and channel coordination with two substitutable products, Eur. J. Oper. Res., 241 (2015), 63-73.  doi: 10.1016/j.ejor.2014.07.043.

[36]

W. G. Zhu and Y. J. He, Green product design in supply chains under competition, Eur. J. Oper. Res., 258 (2017), 165-180.  doi: 10.1016/j.ejor.2016.08.053.

Figure 1.  The green credit mechanism
Figure 2.  The subsidy mechanism
Figure 3.  The interest rate, product's green degree, sales price and market demand
Figure 4.  The profits of the bank and the manufacturer
Figure 5.  The social welfare and the environmental benefits
Table 1.  The profits of the bank and manufacturer under three scenarios
$ {\Pi ^B} $ $ {\Pi ^M} $
Non-subsidy $ \Pi _0^{B*} = \frac{{{a^2}{\theta ^2}}}{{16\left( {2k - {\theta ^2}} \right)}} $ $ \Pi _0^{M*} = \frac{{{a^2}\left( {4k - {\theta ^2}} \right)}}{{8\left( {2k - {\theta ^2}} \right)}} $
Green credit $ \Pi _1^{B*} = \frac{{{a^2}{\theta ^2}}}{{16\left( {2k - {\theta ^2} - 2k{\tau _1}} \right)}} $ $ \Pi _1^{M*} = \frac{{{a^2}\left( {4k - {\theta ^2} - 4k{\tau _1}} \right)}}{{8\left( {2k - {\theta ^2} - 2k{\tau _1}} \right)}} $
Subsidy $ \Pi _2^{B*} = \frac{{{a^2}{\theta ^2}{{\left( {1 + {\tau _2}} \right)}^2}}}{{16\left[ {2k - {\theta ^2}\left( {1 + {\tau _2}} \right)} \right]}} $ $ \Pi _2^{M*} = \frac{{{a^2}\left[ {4k - {\theta ^2}\left( {1 + {\tau _2}} \right)} \right]\left( {1 + {\tau _2}} \right)}}{{8\left[ {2k - {\theta ^2}\left( {1 + {\tau _2}} \right)} \right]}} $
$ {\Pi ^B} $ $ {\Pi ^M} $
Non-subsidy $ \Pi _0^{B*} = \frac{{{a^2}{\theta ^2}}}{{16\left( {2k - {\theta ^2}} \right)}} $ $ \Pi _0^{M*} = \frac{{{a^2}\left( {4k - {\theta ^2}} \right)}}{{8\left( {2k - {\theta ^2}} \right)}} $
Green credit $ \Pi _1^{B*} = \frac{{{a^2}{\theta ^2}}}{{16\left( {2k - {\theta ^2} - 2k{\tau _1}} \right)}} $ $ \Pi _1^{M*} = \frac{{{a^2}\left( {4k - {\theta ^2} - 4k{\tau _1}} \right)}}{{8\left( {2k - {\theta ^2} - 2k{\tau _1}} \right)}} $
Subsidy $ \Pi _2^{B*} = \frac{{{a^2}{\theta ^2}{{\left( {1 + {\tau _2}} \right)}^2}}}{{16\left[ {2k - {\theta ^2}\left( {1 + {\tau _2}} \right)} \right]}} $ $ \Pi _2^{M*} = \frac{{{a^2}\left[ {4k - {\theta ^2}\left( {1 + {\tau _2}} \right)} \right]\left( {1 + {\tau _2}} \right)}}{{8\left[ {2k - {\theta ^2}\left( {1 + {\tau _2}} \right)} \right]}} $
[1]

Qiang Lin, Ying Peng, Ying Hu. Supplier financing service decisions for a capital-constrained supply chain: Trade credit vs. combined credit financing. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1731-1752. doi: 10.3934/jimo.2019026

[2]

Yongjian Wang, Fei Wang. Effects of the carbon credits buy-back policy on manufacturing/remanufacturing decisions of the capital-constrained manufacturer. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021198

[3]

Xiaoxi Zhu, Kai Liu, Miaomiao Wang, Rui Zhang, Minglun Ren. Product line extension with a green added product: Impacts of segmented consumer preference on supply chain improvement and consumer surplus. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022021

[4]

Sheng Wu, Liangpeng Wu, Xianglian Zhao. Can the reform of green credit policy promote enterprise eco-innovation? A theoretical analysis. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1453-1485. doi: 10.3934/jimo.2021028

[5]

Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, 2021, 29 (5) : 3031-3068. doi: 10.3934/era.2021025

[6]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1115-1132. doi: 10.3934/jimo.2021011

[7]

Chirantan Mondal, Bibhas C. Giri. Investigating a green supply chain with product recycling under retailer's fairness behavior. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021129

[8]

Shuhua Zhang, Zhuo Yang, Song Wang. Design of green bonds by double-barrier options. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1867-1882. doi: 10.3934/dcdss.2020110

[9]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[10]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

[11]

Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007

[12]

Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791

[13]

Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307

[14]

Hongjun Peng, Tao Pang. Financing strategies for a capital-constrained supplier under yield uncertainty. Journal of Industrial and Management Optimization, 2020, 16 (2) : 887-909. doi: 10.3934/jimo.2018183

[15]

Gang Xie, Wuyi Yue, Shouyang Wang. Optimal selection of cleaner products in a green supply chain with risk aversion. Journal of Industrial and Management Optimization, 2015, 11 (2) : 515-528. doi: 10.3934/jimo.2015.11.515

[16]

Van Hoang Nguyen. The Hardy–Moser–Trudinger inequality via the transplantation of Green functions. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3559-3574. doi: 10.3934/cpaa.2020155

[17]

Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks and Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167

[18]

Ashkan Mohsenzadeh Ledari, Alireza Arshadi Khamseh, Mohammad Mohammadi. A three echelon revenue oriented green supply chain network design. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 157-168. doi: 10.3934/naco.2018009

[19]

Lijun Zhang, Yixia Shi, Maoan Han. Smooth and singular traveling wave solutions for the Serre-Green-Naghdi equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2917-2926. doi: 10.3934/dcdss.2020217

[20]

Lei Qiao. Asymptotic behaviors of Green-Sch potentials at infinity and its applications. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2321-2338. doi: 10.3934/dcdsb.2017099

2020 Impact Factor: 1.801

Article outline

Figures and Tables

[Back to Top]