• Previous Article
    The comparison between selling and leasing for new and remanufactured products with quality level in the electric vehicle industry
  • JIMO Home
  • This Issue
  • Next Article
    Modelling and computation of optimal multiple investment timing in multi-stage capacity expansion infrastructure projects
doi: 10.3934/jimo.2019111

Mean-field analysis of a scaling MAC radio protocol

1. 

MTA-BME Information Systems Research Group, H-1117 Budapest, Magyar Tudosok krt. 2

2. 

Budapest University of Technology and Economics, Department of Networked Systems and Services, H-1117 Budapest, Magyar Tudosok krt. 2

3. 

MTA-BME Information Systems Research Group, Budapest University of Technology and Economics, Department of Networked Systems and Services, H-1117 Budapest, Magyar Tudosok krt. 2

* Corresponding author

Received  November 2018 Revised  May 2019 Published  September 2019

Fund Project: This work is supported by the OTKA 123914 project and the TUDFO/51757/2019-ITM grants.

We examine the transient behavior of a positioning system with a large number of tags trying to connect to the infrastructure with an exponential backoff policy in case of unsuccessful connection. Using a classic mean-field approach, we derive a system of differential equations whose solution approximates the original process. Analysis of the solution shows that both the solution and the original system exhibits an unusual log-periodic behavior in the mean-field limit, along with other interesting patterns of behavior. We also perform numerical optimization for the backoff policy.

Citation: Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019111
References:
[1]

A.-L. BarabásiR. Albert and H. Jeong, Mean-field theory for scale-free random networks, Physica A: Statistical Mechanics and its Applications, 272 (1999), 173-187.   Google Scholar

[2]

G. Ben ArousA. FriberghN. Gantert and Al an Hammond, Biased random walks on Galton-Watson trees with leaves, Ann. Probab., 40 (2012), 280-338.  doi: 10.1214/10-AOP620.  Google Scholar

[3]

J. I. Capetanakis, Tree algorithms for packet broadcast channels, IEEE Transactions on Information Theory, 25 (1979), 505-515.  doi: 10.1109/TIT.1979.1056093.  Google Scholar

[4]

V. ClaessonH. Lonn and N. Suri, An efficient TDMA start-up and restart synchronization approach for distributed embedded systems, IEEE Transactions on Parallel and Distributed Systems, 15 (2004), 725-739.   Google Scholar

[5]

Federal Communications Commission et al, Title 47-Telecommunication: Chapter I-Federal Communications Commission: Subchapter A-General: Part 15-radio frequency devices, Federal Communications Commission Regulatory Information, (2009). Google Scholar

[6]

S. N. Ethier and T. G. Kurtz, Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. doi: 10.1002/9780470316658.  Google Scholar

[7]

International Organization for Standardization, Information technology-Radio frequency identification for item management-Part 6: Parameters for air interface communications at 860 MHz to 960 MHz General, ISO/IEC standard, (2013). Google Scholar

[8]

C. Kipnis and S. R. S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys., 104 (1986), 1-19.  doi: 10.1007/BF01210789.  Google Scholar

[9]

T. Komorowski, C. Landim and S. Olla, Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation, Grundlehren der mathematischen Wissenschaften, 325. Springer Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-29880-6.  Google Scholar

[10]

T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, Journal of Applied Probability, 7 (1970), 49-58.  doi: 10.2307/3212147.  Google Scholar

[11]

B.-J. KwakN.-O. Song and L. E. Miller, On the stability of exponential backoff, Journal of research of the National Institute of Standards and Technology, 108 (2003), 289-297.   Google Scholar

[12]

B.-J. KwakN.-O. Song and L. E. Miller, Performance analysis of exponential backoff, IEEE/ACM Trans. Netw., 13 (2005), 343-355.   Google Scholar

[13]

V. Bansaye and S. Méléard, Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior, Springer International Publishing, 2015. doi: 10.1007/978-3-319-21711-6.  Google Scholar

[14]

Y. ShenH. Wymeersch and M. Z. Win, Fundamental limits of wideband localization-part II: Cooperative networks, IEEE Trans. Inform. Theory, 56 (2010), 4981-5000.  doi: 10.1109/TIT.2010.2059720.  Google Scholar

[15]

G. W. Shi and Y. Ming, Survey of indoor positioning systems based on ultra-wideband (UWB) technology, Wireless Communications, Networking and Applications, (2016), 1269–1278. doi: 10.1007/978-81-322-2580-5_115.  Google Scholar

[16]

M. Shurman, B. Al Shua'b, M. Alsaedeen, M. F. Al-Mistarihi and K. Darabkh, N-BEB: New backoff algorithm for IEEE 802.11 MAC protocol, In 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), (2014), 540–544. doi: 10.1109/MIPRO.2014.6859627.  Google Scholar

[17]

IEEE Computer Society, Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Standard, 2011. Google Scholar

[18]

L. Y. Song, H. L. Zou and T. T. Zhang, A low complexity asynchronous UWB TDOA localization method, International Journal of Distributed Sensor Networks, 11 (2015). Google Scholar

[19]

D. Stauffer and D. Sornette, Log-periodic oscillations for biased diffusion on random lattice, Physica A, 252 (1998), 271-277.  doi: 10.1016/S0378-4371(97)00680-8.  Google Scholar

[20]

W. Steiner and M. Paulitsch, The transition from asynchronous to synchronous system operation: An approach for distributed fault-tolerant systems, Proceedings 22nd International Conference on Distributed Computing Systemspages, (2002), 329–336. doi: 10.1109/ICDCS.2002.1022270.  Google Scholar

show all references

References:
[1]

A.-L. BarabásiR. Albert and H. Jeong, Mean-field theory for scale-free random networks, Physica A: Statistical Mechanics and its Applications, 272 (1999), 173-187.   Google Scholar

[2]

G. Ben ArousA. FriberghN. Gantert and Al an Hammond, Biased random walks on Galton-Watson trees with leaves, Ann. Probab., 40 (2012), 280-338.  doi: 10.1214/10-AOP620.  Google Scholar

[3]

J. I. Capetanakis, Tree algorithms for packet broadcast channels, IEEE Transactions on Information Theory, 25 (1979), 505-515.  doi: 10.1109/TIT.1979.1056093.  Google Scholar

[4]

V. ClaessonH. Lonn and N. Suri, An efficient TDMA start-up and restart synchronization approach for distributed embedded systems, IEEE Transactions on Parallel and Distributed Systems, 15 (2004), 725-739.   Google Scholar

[5]

Federal Communications Commission et al, Title 47-Telecommunication: Chapter I-Federal Communications Commission: Subchapter A-General: Part 15-radio frequency devices, Federal Communications Commission Regulatory Information, (2009). Google Scholar

[6]

S. N. Ethier and T. G. Kurtz, Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. doi: 10.1002/9780470316658.  Google Scholar

[7]

International Organization for Standardization, Information technology-Radio frequency identification for item management-Part 6: Parameters for air interface communications at 860 MHz to 960 MHz General, ISO/IEC standard, (2013). Google Scholar

[8]

C. Kipnis and S. R. S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys., 104 (1986), 1-19.  doi: 10.1007/BF01210789.  Google Scholar

[9]

T. Komorowski, C. Landim and S. Olla, Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation, Grundlehren der mathematischen Wissenschaften, 325. Springer Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-29880-6.  Google Scholar

[10]

T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, Journal of Applied Probability, 7 (1970), 49-58.  doi: 10.2307/3212147.  Google Scholar

[11]

B.-J. KwakN.-O. Song and L. E. Miller, On the stability of exponential backoff, Journal of research of the National Institute of Standards and Technology, 108 (2003), 289-297.   Google Scholar

[12]

B.-J. KwakN.-O. Song and L. E. Miller, Performance analysis of exponential backoff, IEEE/ACM Trans. Netw., 13 (2005), 343-355.   Google Scholar

[13]

V. Bansaye and S. Méléard, Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior, Springer International Publishing, 2015. doi: 10.1007/978-3-319-21711-6.  Google Scholar

[14]

Y. ShenH. Wymeersch and M. Z. Win, Fundamental limits of wideband localization-part II: Cooperative networks, IEEE Trans. Inform. Theory, 56 (2010), 4981-5000.  doi: 10.1109/TIT.2010.2059720.  Google Scholar

[15]

G. W. Shi and Y. Ming, Survey of indoor positioning systems based on ultra-wideband (UWB) technology, Wireless Communications, Networking and Applications, (2016), 1269–1278. doi: 10.1007/978-81-322-2580-5_115.  Google Scholar

[16]

M. Shurman, B. Al Shua'b, M. Alsaedeen, M. F. Al-Mistarihi and K. Darabkh, N-BEB: New backoff algorithm for IEEE 802.11 MAC protocol, In 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), (2014), 540–544. doi: 10.1109/MIPRO.2014.6859627.  Google Scholar

[17]

IEEE Computer Society, Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Standard, 2011. Google Scholar

[18]

L. Y. Song, H. L. Zou and T. T. Zhang, A low complexity asynchronous UWB TDOA localization method, International Journal of Distributed Sensor Networks, 11 (2015). Google Scholar

[19]

D. Stauffer and D. Sornette, Log-periodic oscillations for biased diffusion on random lattice, Physica A, 252 (1998), 271-277.  doi: 10.1016/S0378-4371(97)00680-8.  Google Scholar

[20]

W. Steiner and M. Paulitsch, The transition from asynchronous to synchronous system operation: An approach for distributed fault-tolerant systems, Proceedings 22nd International Conference on Distributed Computing Systemspages, (2002), 329–336. doi: 10.1109/ICDCS.2002.1022270.  Google Scholar

Figure 1.  State transitions of a single user; $ p_i $ are constant, $ c_i $ depend on other users
Figure 2.  Convergence of $ w_0(t) $ and $ w_1(t) $ when $ \alpha $ is fixed and $ L\to\infty $
Figure 3.  Simulation for $ N_{L+i}(Nt)/N $ versus numerical solution for $ z_i(t) $ for $ i = 0, 1, 2 $ (parameters are $ N = 2^{10}, \gamma = 2, L = 10, \alpha = 0 $)
Figure 4.  Early rapid transition: $ z_i(t) $ for values of $ i $ considerably smaller than 0 ($ \alpha = 0 $ and $ \gamma = 2 $)
Figure 5.  The functions $ z(\gamma, \alpha, t) $ for $ \gamma = 20 $ and $ \alpha = 0 $ (thick line), $ 1/10, \dots, 9/10 $
Figure 6.  The functions $ z(\gamma, \alpha, t) $ for $ \gamma = 2 $ and $ \alpha = 0, 1/10, \dots, 9/10 $
Figure 7.  The values $ z_i(2, \alpha, 1) $ for $ \alpha = 0, 1/20, \dots, 19/20 $
Figure 8.  The values $ z_i(20, \alpha, 1) $ for $ \alpha = 0, 1/20, \dots, 19/20 $
Figure 9.  Mean of the scaled connection time for $ \gamma=20 $
Figure 10.  Mean of the scaled connection time for $ \gamma=2 $
Figure 11.  Mean of the scaled connection time as a function of $ \gamma $
Figure 12.  Simulation for $1-\bar N_0(Nt)/N $ (red line) versus $\bar z(t) $ (dashed blue line); parameters are $ N=2^{10},\gamma=2,L=10,\alpha=0,t_0=0.5$
Figure 13.  $z(t)$ (no switching, black line) versus $\bar z(t) $ (switching at time $t_0=0.72 $, optimal for $m_z $, dotted red line) versus $ \bar z'(t)$ (switching at time $ t_0=0.39$, optimal for the 99.9% quantile, dashed blue line). Parameters are $\gamma=2,L=10,\alpha=0 $
Table 1.  Optimization of the switching time for a prescribed quantile ($ \alpha = 0 $)
switching mean time quantile
$ \gamma $ time $ t_0 $ to connect 0.9 0.95 0.99 0.999
2 $ \infty $ 2.722 5.306 7.171 12.91 25.47
2 0.718 2.198 3.738 4.522 6.791 11.57
2 0.607 2.230 3.687 4.369 6.328 10.44
2 0.534 2.321 3.732 4.344 6.089 9.730
2 0.453 2.561 3.954 4.486 5.983 9.094
2 0.387 3.019 4.448 4.912 6.201 8.877
1.65 $ \infty $ 2.628 4.746 6.050 9.776 17.20
1.65 1.008 2.321 3.782 4.439 6.213 9.634
1.65 0.838 2.361 3.748 4.313 5.825 8.729
1.65 0.777 2.408 3.775 4.307 5.719 8.428
1.65 0.677 2.563 3.916 4.390 5.637 8.017
1.65 0.573 2.940 4.325 4.737 5.805 7.833
switching mean time quantile
$ \gamma $ time $ t_0 $ to connect 0.9 0.95 0.99 0.999
2 $ \infty $ 2.722 5.306 7.171 12.91 25.47
2 0.718 2.198 3.738 4.522 6.791 11.57
2 0.607 2.230 3.687 4.369 6.328 10.44
2 0.534 2.321 3.732 4.344 6.089 9.730
2 0.453 2.561 3.954 4.486 5.983 9.094
2 0.387 3.019 4.448 4.912 6.201 8.877
1.65 $ \infty $ 2.628 4.746 6.050 9.776 17.20
1.65 1.008 2.321 3.782 4.439 6.213 9.634
1.65 0.838 2.361 3.748 4.313 5.825 8.729
1.65 0.777 2.408 3.775 4.307 5.719 8.428
1.65 0.677 2.563 3.916 4.390 5.637 8.017
1.65 0.573 2.940 4.325 4.737 5.805 7.833
[1]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[2]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[9]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[10]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[11]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[12]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[15]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[16]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[17]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[18]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[19]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (108)
  • HTML views (434)
  • Cited by (0)

[Back to Top]