[1]
|
A.-L. Barabási, R. Albert and H. Jeong, Mean-field theory for scale-free random networks, Physica A: Statistical Mechanics and its Applications, 272 (1999), 173-187.
|
[2]
|
G. Ben Arous, A. Fribergh, N. Gantert and Al an Hammond, Biased random walks on Galton-Watson trees with leaves, Ann. Probab., 40 (2012), 280-338.
doi: 10.1214/10-AOP620.
|
[3]
|
J. I. Capetanakis, Tree algorithms for packet broadcast channels, IEEE Transactions on Information Theory, 25 (1979), 505-515.
doi: 10.1109/TIT.1979.1056093.
|
[4]
|
V. Claesson, H. Lonn and N. Suri, An efficient TDMA start-up and restart synchronization approach for distributed embedded systems, IEEE Transactions on Parallel and Distributed Systems, 15 (2004), 725-739.
|
[5]
|
Federal Communications Commission et al, Title 47-Telecommunication: Chapter I-Federal Communications Commission: Subchapter A-General: Part 15-radio frequency devices, Federal Communications Commission Regulatory Information, (2009).
|
[6]
|
S. N. Ethier and T. G. Kurtz, Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986.
doi: 10.1002/9780470316658.
|
[7]
|
International Organization for Standardization, Information technology-Radio frequency identification for item management-Part 6: Parameters for air interface communications at 860 MHz to 960 MHz General, ISO/IEC standard, (2013).
|
[8]
|
C. Kipnis and S. R. S. Varadhan, Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions, Comm. Math. Phys., 104 (1986), 1-19.
doi: 10.1007/BF01210789.
|
[9]
|
T. Komorowski, C. Landim and S. Olla, Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation, Grundlehren der mathematischen Wissenschaften, 325. Springer Berlin Heidelberg, 2012.
doi: 10.1007/978-3-642-29880-6.
|
[10]
|
T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, Journal of Applied Probability, 7 (1970), 49-58.
doi: 10.2307/3212147.
|
[11]
|
B.-J. Kwak, N.-O. Song and L. E. Miller, On the stability of exponential backoff, Journal of research of the National Institute of Standards and Technology, 108 (2003), 289-297.
|
[12]
|
B.-J. Kwak, N.-O. Song and L. E. Miller, Performance analysis of exponential backoff, IEEE/ACM Trans. Netw., 13 (2005), 343-355.
|
[13]
|
V. Bansaye and S. Méléard, Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior, Springer International Publishing, 2015.
doi: 10.1007/978-3-319-21711-6.
|
[14]
|
Y. Shen, H. Wymeersch and M. Z. Win, Fundamental limits of wideband localization-part II: Cooperative networks, IEEE Trans. Inform. Theory, 56 (2010), 4981-5000.
doi: 10.1109/TIT.2010.2059720.
|
[15]
|
G. W. Shi and Y. Ming, Survey of indoor positioning systems based on ultra-wideband (UWB) technology, Wireless Communications, Networking and Applications, (2016), 1269–1278.
doi: 10.1007/978-81-322-2580-5_115.
|
[16]
|
M. Shurman, B. Al Shua'b, M. Alsaedeen, M. F. Al-Mistarihi and K. Darabkh, N-BEB: New backoff algorithm for IEEE 802.11 MAC protocol, In 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), (2014), 540–544.
doi: 10.1109/MIPRO.2014.6859627.
|
[17]
|
IEEE Computer Society, Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Standard, 2011.
|
[18]
|
L. Y. Song, H. L. Zou and T. T. Zhang, A low complexity asynchronous UWB TDOA localization method, International Journal of Distributed Sensor Networks, 11 (2015).
|
[19]
|
D. Stauffer and D. Sornette, Log-periodic oscillations for biased diffusion on random lattice, Physica A, 252 (1998), 271-277.
doi: 10.1016/S0378-4371(97)00680-8.
|
[20]
|
W. Steiner and M. Paulitsch, The transition from asynchronous to synchronous system operation: An approach for distributed fault-tolerant systems, Proceedings 22nd International Conference on Distributed Computing Systemspages, (2002), 329–336.
doi: 10.1109/ICDCS.2002.1022270.
|