doi: 10.3934/jimo.2019112

Optimal customer behavior in observable and unobservable discrete-time queues

1. 

School of Computer Applications, Kalinga Institute of Industrial Technology, Bhubaneswar-751024, India

2. 

Engineering Systems and Design, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372

Received  December 2018 Revised  April 2019 Published  September 2019

This paper studies the effect of information suppression on Naor's model as well as on Edelson and Hildebrand's model under geometric distribution. We set the suitable non-cooperative games and search for their Nash equilibria under the observable and unobservable system. In each case, we analyze the effects of information level on the customers' equilibrium and socially optimal balking strategies as well as on the profit maximization of the system manager. The socially optimal behavior and the inefficiency of the equilibrium strategies are quantified via the price of anarchy measure. We discuss a comparison study of the profit maximization and social welfare under an imposed admission fee. Also, the impact of information on the selfish and social optimal joining rates is examined. Numerical results are presented to exemplify the impact of system parameters on the optimal behavior of customers under different information levels.

Citation: Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019112
References:
[1]

Y. BixuanH. ZhentingW. Jinbiao and L. Zaiming, Analysis of the equilibrium strategies in the Geo/Geo/1 queue with multiple working vacations, Quality Technology & Quantitative Management, 15 (2018), 663-685.  doi: 10.1080/16843703.2017.1335488.  Google Scholar

[2]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research, 218 (2012), 708-715.  doi: 10.1016/j.ejor.2011.11.043.  Google Scholar

[3]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times, Queueing Systems, 56 (2007), 213-228.  doi: 10.1007/s11134-007-9036-7.  Google Scholar

[4]

H. Chen and M. Frank, Monopoly pricing when customers queue, IIE Transactions, 36 (2004), 569-581.  doi: 10.1080/07408170490438690.  Google Scholar

[5]

Y. Dimitrakopoulos and A. N. Burnetas, Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control, European Journal of Operational Research, 252 (2016), 477-486.  doi: 10.1016/j.ejor.2015.12.029.  Google Scholar

[6]

N. M. Edelson and D. K. Hilderbrand, Congestion tolls for poisson queuing processes, Econometrica, 43 (1975), 81-92.  doi: 10.2307/1913415.  Google Scholar

[7]

S. Gao and J. T. Wang, Equilibrium balking strategies in the observable Geo/Geo/1 queue with delayed multiple vacations, RAIRO-Operations Research, 50 (2016), 119-129.  doi: 10.1051/ro/2015019.  Google Scholar

[8]

G. Gilboa-FreedmanR. Hassin and Y. Kerner, The price of anarchy in the Markovian single server queue, IEEE Transactions on Automatic Control, 59 (2014), 455-459.  doi: 10.1109/TAC.2013.2270872.  Google Scholar

[9]

V. Goswami and G. Panda, Mixed equilibrium and social joining strategies in Markovian queues with Bernoulli-schedule-controlled vacation and vacation interruption, Quality Technology & Quantitative Management, (2018), 531–559. doi: 10.1080/16843703.2018.1480266.  Google Scholar

[10]

V. Goswami and G. Panda, Optimal information policy in discrete-time queues with strategic customers, Journal of Industrial & Management Optimization, 15 (2019), 689-703.   Google Scholar

[11]

P. F. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues, Operations Research, 59 (2011), 986-997.  doi: 10.1287/opre.1100.0907.  Google Scholar

[12]

R. Hassin, Consumer information in markets with random product quality: The case of queues and balking, Econometrica, 54 (1986), 1185-1195.  doi: 10.2307/1912327.  Google Scholar

[13] R. Hassin, Rational Queueing, CRC Press, Boca Raton, FL, 2016.  doi: 10.1201/b20014.  Google Scholar
[14]

R. Hassin and M. Haviv, To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems, International Series in Operations Research & Management Science, 59. Kluwer Academic Publishers, Boston, MA, 2003. doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[15] J. J. Hunter, Mathematical Techniques of Applied Probability: Discrete Time Models: Basic Theory, Vol. 1. Operations Research and Industrial Engineering, Academic Press, Inc., New York, 1983.   Google Scholar
[16]

R. Ibrahim, Sharing delay information in service systems: A literature survey, Queueing Systems, 89 (2018), 49-79.  doi: 10.1007/s11134-018-9577-y.  Google Scholar

[17]

L. LiJ. T. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns, Computers & Industrial Engineering, 66 (2013), 751-757.  doi: 10.1016/j.cie.2013.09.023.  Google Scholar

[18]

Y. MaW.-Q. Liu and J.-H. Li, Equilibrium balking behavior in the Geo/Geo/1 queueing system with multiple vacations, Applied Mathematical Modelling, 37 (2013), 3861-3878.  doi: 10.1016/j.apm.2012.08.017.  Google Scholar

[19]

P. Naor, The regulation of queue size by levying tolls, Econometrica, 37 (1969), 15-24.  doi: 10.2307/1909200.  Google Scholar

[20]

G. Panda and V. Goswami, Effect of information on the strategic behavior of customers in a discrete-time bulk service queue, Journal of Industrial & Management Optimization, 708–715. doi: 10.3934/jimo.2019007.  Google Scholar

[21]

G. Panda, V. Goswami and A. D. Banik, Equilibrium and socially optimal balking strategies in Markovian queues with vacations and sequential abandonment, Asia-Pacific Journal of Operational Research, 33 (2016), 1650036, 34 pp. doi: 10.1142/S0217595916500366.  Google Scholar

[22]

G. PandaV. Goswami and A. D. Banik, Equilibrium behaviour and social optimization in Markovian queues with impatient customers and variant of working vacations, RAIRO-Operations Research, 51 (2017), 685-707.  doi: 10.1051/ro/2016056.  Google Scholar

[23]

R. ShoneV. A. Knight and J. E. Williams, Comparisons between observable and unobservable M/M/1 queues with respect to optimal customer behavior, European Journal of Operational Research, 227 (2013), 133-141.  doi: 10.1016/j.ejor.2012.12.016.  Google Scholar

[24]

W. SunS. Y. Li and E. Cheng-Guo, Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and $N$-policy, Applied Mathematical Modelling, 40 (2016), 284-301.  doi: 10.1016/j.apm.2015.04.045.  Google Scholar

[25]

T. T. YangJ. T. Wang and F. Zhang, Equilibrium balking strategies in the Geo/Geo/1 queues with server breakdowns and repairs, Quality Technology & Quantitative Management, 11 (2014), 231-243.  doi: 10.1080/16843703.2014.11673341.  Google Scholar

[26]

M. M. Yu and A. S. Alfa, Strategic queueing behavior for individual and social optimization in managing discrete time working vacation queue with Bernoulli interruption schedule, Computers & Operations Research, 73 (2016), 43-55.  doi: 10.1016/j.cor.2016.03.011.  Google Scholar

show all references

References:
[1]

Y. BixuanH. ZhentingW. Jinbiao and L. Zaiming, Analysis of the equilibrium strategies in the Geo/Geo/1 queue with multiple working vacations, Quality Technology & Quantitative Management, 15 (2018), 663-685.  doi: 10.1080/16843703.2017.1335488.  Google Scholar

[2]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research, 218 (2012), 708-715.  doi: 10.1016/j.ejor.2011.11.043.  Google Scholar

[3]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times, Queueing Systems, 56 (2007), 213-228.  doi: 10.1007/s11134-007-9036-7.  Google Scholar

[4]

H. Chen and M. Frank, Monopoly pricing when customers queue, IIE Transactions, 36 (2004), 569-581.  doi: 10.1080/07408170490438690.  Google Scholar

[5]

Y. Dimitrakopoulos and A. N. Burnetas, Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control, European Journal of Operational Research, 252 (2016), 477-486.  doi: 10.1016/j.ejor.2015.12.029.  Google Scholar

[6]

N. M. Edelson and D. K. Hilderbrand, Congestion tolls for poisson queuing processes, Econometrica, 43 (1975), 81-92.  doi: 10.2307/1913415.  Google Scholar

[7]

S. Gao and J. T. Wang, Equilibrium balking strategies in the observable Geo/Geo/1 queue with delayed multiple vacations, RAIRO-Operations Research, 50 (2016), 119-129.  doi: 10.1051/ro/2015019.  Google Scholar

[8]

G. Gilboa-FreedmanR. Hassin and Y. Kerner, The price of anarchy in the Markovian single server queue, IEEE Transactions on Automatic Control, 59 (2014), 455-459.  doi: 10.1109/TAC.2013.2270872.  Google Scholar

[9]

V. Goswami and G. Panda, Mixed equilibrium and social joining strategies in Markovian queues with Bernoulli-schedule-controlled vacation and vacation interruption, Quality Technology & Quantitative Management, (2018), 531–559. doi: 10.1080/16843703.2018.1480266.  Google Scholar

[10]

V. Goswami and G. Panda, Optimal information policy in discrete-time queues with strategic customers, Journal of Industrial & Management Optimization, 15 (2019), 689-703.   Google Scholar

[11]

P. F. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues, Operations Research, 59 (2011), 986-997.  doi: 10.1287/opre.1100.0907.  Google Scholar

[12]

R. Hassin, Consumer information in markets with random product quality: The case of queues and balking, Econometrica, 54 (1986), 1185-1195.  doi: 10.2307/1912327.  Google Scholar

[13] R. Hassin, Rational Queueing, CRC Press, Boca Raton, FL, 2016.  doi: 10.1201/b20014.  Google Scholar
[14]

R. Hassin and M. Haviv, To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems, International Series in Operations Research & Management Science, 59. Kluwer Academic Publishers, Boston, MA, 2003. doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[15] J. J. Hunter, Mathematical Techniques of Applied Probability: Discrete Time Models: Basic Theory, Vol. 1. Operations Research and Industrial Engineering, Academic Press, Inc., New York, 1983.   Google Scholar
[16]

R. Ibrahim, Sharing delay information in service systems: A literature survey, Queueing Systems, 89 (2018), 49-79.  doi: 10.1007/s11134-018-9577-y.  Google Scholar

[17]

L. LiJ. T. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns, Computers & Industrial Engineering, 66 (2013), 751-757.  doi: 10.1016/j.cie.2013.09.023.  Google Scholar

[18]

Y. MaW.-Q. Liu and J.-H. Li, Equilibrium balking behavior in the Geo/Geo/1 queueing system with multiple vacations, Applied Mathematical Modelling, 37 (2013), 3861-3878.  doi: 10.1016/j.apm.2012.08.017.  Google Scholar

[19]

P. Naor, The regulation of queue size by levying tolls, Econometrica, 37 (1969), 15-24.  doi: 10.2307/1909200.  Google Scholar

[20]

G. Panda and V. Goswami, Effect of information on the strategic behavior of customers in a discrete-time bulk service queue, Journal of Industrial & Management Optimization, 708–715. doi: 10.3934/jimo.2019007.  Google Scholar

[21]

G. Panda, V. Goswami and A. D. Banik, Equilibrium and socially optimal balking strategies in Markovian queues with vacations and sequential abandonment, Asia-Pacific Journal of Operational Research, 33 (2016), 1650036, 34 pp. doi: 10.1142/S0217595916500366.  Google Scholar

[22]

G. PandaV. Goswami and A. D. Banik, Equilibrium behaviour and social optimization in Markovian queues with impatient customers and variant of working vacations, RAIRO-Operations Research, 51 (2017), 685-707.  doi: 10.1051/ro/2016056.  Google Scholar

[23]

R. ShoneV. A. Knight and J. E. Williams, Comparisons between observable and unobservable M/M/1 queues with respect to optimal customer behavior, European Journal of Operational Research, 227 (2013), 133-141.  doi: 10.1016/j.ejor.2012.12.016.  Google Scholar

[24]

W. SunS. Y. Li and E. Cheng-Guo, Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and $N$-policy, Applied Mathematical Modelling, 40 (2016), 284-301.  doi: 10.1016/j.apm.2015.04.045.  Google Scholar

[25]

T. T. YangJ. T. Wang and F. Zhang, Equilibrium balking strategies in the Geo/Geo/1 queues with server breakdowns and repairs, Quality Technology & Quantitative Management, 11 (2014), 231-243.  doi: 10.1080/16843703.2014.11673341.  Google Scholar

[26]

M. M. Yu and A. S. Alfa, Strategic queueing behavior for individual and social optimization in managing discrete time working vacation queue with Bernoulli interruption schedule, Computers & Operations Research, 73 (2016), 43-55.  doi: 10.1016/j.cor.2016.03.011.  Google Scholar

Figure 1.  Various time epochs in late-arrival system with delayed access (LAS-DA)
Figure 2.  State transition diagram of the Geo/Geo/1/$ n_e $ queueing model
Figure 3.  State transition diagram of the Geo/Geo/1 queue with joining probability $ f $
Figure 4.  Dependence of threshold strategies on $ R/C $ for $ \lambda = 0.2, \mu = 0.5 $
Figure 5.  Dependence of threshold strategies on $ \mu $ for $ \lambda = 0.2, R = 30, C = 1 $
Figure 6.  Dependence of threshold strategies on $ \lambda $ for $ R = 30, \mu = 0.5, C = 1 $
Figure 7.  PoA vs $ \lambda $ in the observable queue with parameters $ R = 30, C = 1, \mu = 0.5 $
Figure 8.  PoA vs $ \mu $ in the observable queue with parameters $ \lambda = 0.5, R = 30, C = 1 $
Figure 9.  $ R/C $ vs mixed strategies for the unobservable case with $ \lambda = 0.2, \mu = 0.5 $
Figure 10.  $ \mu $ vs mixed strategies for the unobservable case with $ \lambda = 0.5, R = 30, C = 1 $
Figure 11.  $ \lambda $ vs mixed strategies for the unobservable case with $ R = 10, \mu = 0.6, C = 5 $
Figure 12.  $ \lambda $ vs socially equilibrium benefit for the observable case with $ R = 30, C = 1, \mu = 0.5 $
Figure 13.  Social welfare under a profit maximizing fee for the observable case with $ R = 30, C = 1, \mu = 0.5 $
Figure 14.  Selfish optimal joining rate comparison
Figure 15.  Socially optimal joining rate comparison
Table 1.  Equilibrium joining strategy
Case $ f_e $ $ \lambda_e $ $ W_e $
$ \lambda\le \mu-\frac{C\bar{\mu}}{R-C} $ $ 1 $ $ \lambda $ $ \frac{\bar{\lambda}}{\mu-\lambda} $
$ 0\le \mu-\frac{C\bar{\mu}}{R-C} < \lambda $ $ \frac{1}{\lambda}(\mu-\frac{C\bar{\mu}}{R-C}) $ $ \mu-\frac{C\bar{\mu}}{R-C} $ $ \frac{R}{C} $
$ \mu-\frac{C\bar{\mu}}{R-C} <0 $ 0 0 $ \frac{1}{\mu} $
Case $ f_e $ $ \lambda_e $ $ W_e $
$ \lambda\le \mu-\frac{C\bar{\mu}}{R-C} $ $ 1 $ $ \lambda $ $ \frac{\bar{\lambda}}{\mu-\lambda} $
$ 0\le \mu-\frac{C\bar{\mu}}{R-C} < \lambda $ $ \frac{1}{\lambda}(\mu-\frac{C\bar{\mu}}{R-C}) $ $ \mu-\frac{C\bar{\mu}}{R-C} $ $ \frac{R}{C} $
$ \mu-\frac{C\bar{\mu}}{R-C} <0 $ 0 0 $ \frac{1}{\mu} $
Table 2.  Socially optimal joining strategy
Case $ f_s $ $ \lambda_s $ $ W_s $
$ \lambda\le \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ 1 $ $ \lambda $ $ \frac{\bar{\lambda}}{\mu-\lambda} $
$ \lambda > \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ \frac{\mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}}}{\lambda} $ $ \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ 1+\bar{\mu}\sqrt{\frac{R-C}{C\mu\bar{\mu}}} $
Case $ f_s $ $ \lambda_s $ $ W_s $
$ \lambda\le \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ 1 $ $ \lambda $ $ \frac{\bar{\lambda}}{\mu-\lambda} $
$ \lambda > \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ \frac{\mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}}}{\lambda} $ $ \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ 1+\bar{\mu}\sqrt{\frac{R-C}{C\mu\bar{\mu}}} $
[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[3]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[8]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[9]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[10]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[11]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[12]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[13]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[14]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[20]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (105)
  • HTML views (479)
  • Cited by (0)

Other articles
by authors

[Back to Top]