January  2021, 17(1): 299-316. doi: 10.3934/jimo.2019112

Optimal customer behavior in observable and unobservable discrete-time queues

1. 

School of Computer Applications, Kalinga Institute of Industrial Technology, Bhubaneswar-751024, India

2. 

Engineering Systems and Design, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372

Received  December 2018 Revised  April 2019 Published  September 2019

This paper studies the effect of information suppression on Naor's model as well as on Edelson and Hildebrand's model under geometric distribution. We set the suitable non-cooperative games and search for their Nash equilibria under the observable and unobservable system. In each case, we analyze the effects of information level on the customers' equilibrium and socially optimal balking strategies as well as on the profit maximization of the system manager. The socially optimal behavior and the inefficiency of the equilibrium strategies are quantified via the price of anarchy measure. We discuss a comparison study of the profit maximization and social welfare under an imposed admission fee. Also, the impact of information on the selfish and social optimal joining rates is examined. Numerical results are presented to exemplify the impact of system parameters on the optimal behavior of customers under different information levels.

Citation: Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112
References:
[1]

Y. BixuanH. ZhentingW. Jinbiao and L. Zaiming, Analysis of the equilibrium strategies in the Geo/Geo/1 queue with multiple working vacations, Quality Technology & Quantitative Management, 15 (2018), 663-685.  doi: 10.1080/16843703.2017.1335488.  Google Scholar

[2]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research, 218 (2012), 708-715.  doi: 10.1016/j.ejor.2011.11.043.  Google Scholar

[3]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times, Queueing Systems, 56 (2007), 213-228.  doi: 10.1007/s11134-007-9036-7.  Google Scholar

[4]

H. Chen and M. Frank, Monopoly pricing when customers queue, IIE Transactions, 36 (2004), 569-581.  doi: 10.1080/07408170490438690.  Google Scholar

[5]

Y. Dimitrakopoulos and A. N. Burnetas, Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control, European Journal of Operational Research, 252 (2016), 477-486.  doi: 10.1016/j.ejor.2015.12.029.  Google Scholar

[6]

N. M. Edelson and D. K. Hilderbrand, Congestion tolls for poisson queuing processes, Econometrica, 43 (1975), 81-92.  doi: 10.2307/1913415.  Google Scholar

[7]

S. Gao and J. T. Wang, Equilibrium balking strategies in the observable Geo/Geo/1 queue with delayed multiple vacations, RAIRO-Operations Research, 50 (2016), 119-129.  doi: 10.1051/ro/2015019.  Google Scholar

[8]

G. Gilboa-FreedmanR. Hassin and Y. Kerner, The price of anarchy in the Markovian single server queue, IEEE Transactions on Automatic Control, 59 (2014), 455-459.  doi: 10.1109/TAC.2013.2270872.  Google Scholar

[9]

V. Goswami and G. Panda, Mixed equilibrium and social joining strategies in Markovian queues with Bernoulli-schedule-controlled vacation and vacation interruption, Quality Technology & Quantitative Management, (2018), 531–559. doi: 10.1080/16843703.2018.1480266.  Google Scholar

[10]

V. Goswami and G. Panda, Optimal information policy in discrete-time queues with strategic customers, Journal of Industrial & Management Optimization, 15 (2019), 689-703.   Google Scholar

[11]

P. F. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues, Operations Research, 59 (2011), 986-997.  doi: 10.1287/opre.1100.0907.  Google Scholar

[12]

R. Hassin, Consumer information in markets with random product quality: The case of queues and balking, Econometrica, 54 (1986), 1185-1195.  doi: 10.2307/1912327.  Google Scholar

[13] R. Hassin, Rational Queueing, CRC Press, Boca Raton, FL, 2016.  doi: 10.1201/b20014.  Google Scholar
[14]

R. Hassin and M. Haviv, To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems, International Series in Operations Research & Management Science, 59. Kluwer Academic Publishers, Boston, MA, 2003. doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[15] J. J. Hunter, Mathematical Techniques of Applied Probability: Discrete Time Models: Basic Theory, Vol. 1. Operations Research and Industrial Engineering, Academic Press, Inc., New York, 1983.   Google Scholar
[16]

R. Ibrahim, Sharing delay information in service systems: A literature survey, Queueing Systems, 89 (2018), 49-79.  doi: 10.1007/s11134-018-9577-y.  Google Scholar

[17]

L. LiJ. T. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns, Computers & Industrial Engineering, 66 (2013), 751-757.  doi: 10.1016/j.cie.2013.09.023.  Google Scholar

[18]

Y. MaW.-Q. Liu and J.-H. Li, Equilibrium balking behavior in the Geo/Geo/1 queueing system with multiple vacations, Applied Mathematical Modelling, 37 (2013), 3861-3878.  doi: 10.1016/j.apm.2012.08.017.  Google Scholar

[19]

P. Naor, The regulation of queue size by levying tolls, Econometrica, 37 (1969), 15-24.  doi: 10.2307/1909200.  Google Scholar

[20]

G. Panda and V. Goswami, Effect of information on the strategic behavior of customers in a discrete-time bulk service queue, Journal of Industrial & Management Optimization, 708–715. doi: 10.3934/jimo.2019007.  Google Scholar

[21]

G. Panda, V. Goswami and A. D. Banik, Equilibrium and socially optimal balking strategies in Markovian queues with vacations and sequential abandonment, Asia-Pacific Journal of Operational Research, 33 (2016), 1650036, 34 pp. doi: 10.1142/S0217595916500366.  Google Scholar

[22]

G. PandaV. Goswami and A. D. Banik, Equilibrium behaviour and social optimization in Markovian queues with impatient customers and variant of working vacations, RAIRO-Operations Research, 51 (2017), 685-707.  doi: 10.1051/ro/2016056.  Google Scholar

[23]

R. ShoneV. A. Knight and J. E. Williams, Comparisons between observable and unobservable M/M/1 queues with respect to optimal customer behavior, European Journal of Operational Research, 227 (2013), 133-141.  doi: 10.1016/j.ejor.2012.12.016.  Google Scholar

[24]

W. SunS. Y. Li and E. Cheng-Guo, Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and $N$-policy, Applied Mathematical Modelling, 40 (2016), 284-301.  doi: 10.1016/j.apm.2015.04.045.  Google Scholar

[25]

T. T. YangJ. T. Wang and F. Zhang, Equilibrium balking strategies in the Geo/Geo/1 queues with server breakdowns and repairs, Quality Technology & Quantitative Management, 11 (2014), 231-243.  doi: 10.1080/16843703.2014.11673341.  Google Scholar

[26]

M. M. Yu and A. S. Alfa, Strategic queueing behavior for individual and social optimization in managing discrete time working vacation queue with Bernoulli interruption schedule, Computers & Operations Research, 73 (2016), 43-55.  doi: 10.1016/j.cor.2016.03.011.  Google Scholar

show all references

References:
[1]

Y. BixuanH. ZhentingW. Jinbiao and L. Zaiming, Analysis of the equilibrium strategies in the Geo/Geo/1 queue with multiple working vacations, Quality Technology & Quantitative Management, 15 (2018), 663-685.  doi: 10.1080/16843703.2017.1335488.  Google Scholar

[2]

O. Boudali and A. Economou, Optimal and equilibrium balking strategies in the single server Markovian queue with catastrophes, European Journal of Operational Research, 218 (2012), 708-715.  doi: 10.1016/j.ejor.2011.11.043.  Google Scholar

[3]

A. Burnetas and A. Economou, Equilibrium customer strategies in a single server Markovian queue with setup times, Queueing Systems, 56 (2007), 213-228.  doi: 10.1007/s11134-007-9036-7.  Google Scholar

[4]

H. Chen and M. Frank, Monopoly pricing when customers queue, IIE Transactions, 36 (2004), 569-581.  doi: 10.1080/07408170490438690.  Google Scholar

[5]

Y. Dimitrakopoulos and A. N. Burnetas, Customer equilibrium and optimal strategies in an M/M/1 queue with dynamic service control, European Journal of Operational Research, 252 (2016), 477-486.  doi: 10.1016/j.ejor.2015.12.029.  Google Scholar

[6]

N. M. Edelson and D. K. Hilderbrand, Congestion tolls for poisson queuing processes, Econometrica, 43 (1975), 81-92.  doi: 10.2307/1913415.  Google Scholar

[7]

S. Gao and J. T. Wang, Equilibrium balking strategies in the observable Geo/Geo/1 queue with delayed multiple vacations, RAIRO-Operations Research, 50 (2016), 119-129.  doi: 10.1051/ro/2015019.  Google Scholar

[8]

G. Gilboa-FreedmanR. Hassin and Y. Kerner, The price of anarchy in the Markovian single server queue, IEEE Transactions on Automatic Control, 59 (2014), 455-459.  doi: 10.1109/TAC.2013.2270872.  Google Scholar

[9]

V. Goswami and G. Panda, Mixed equilibrium and social joining strategies in Markovian queues with Bernoulli-schedule-controlled vacation and vacation interruption, Quality Technology & Quantitative Management, (2018), 531–559. doi: 10.1080/16843703.2018.1480266.  Google Scholar

[10]

V. Goswami and G. Panda, Optimal information policy in discrete-time queues with strategic customers, Journal of Industrial & Management Optimization, 15 (2019), 689-703.   Google Scholar

[11]

P. F. Guo and R. Hassin, Strategic behavior and social optimization in Markovian vacation queues, Operations Research, 59 (2011), 986-997.  doi: 10.1287/opre.1100.0907.  Google Scholar

[12]

R. Hassin, Consumer information in markets with random product quality: The case of queues and balking, Econometrica, 54 (1986), 1185-1195.  doi: 10.2307/1912327.  Google Scholar

[13] R. Hassin, Rational Queueing, CRC Press, Boca Raton, FL, 2016.  doi: 10.1201/b20014.  Google Scholar
[14]

R. Hassin and M. Haviv, To Queue or Not to Queue: Equilibrium Behavior in Queueing Systems, International Series in Operations Research & Management Science, 59. Kluwer Academic Publishers, Boston, MA, 2003. doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[15] J. J. Hunter, Mathematical Techniques of Applied Probability: Discrete Time Models: Basic Theory, Vol. 1. Operations Research and Industrial Engineering, Academic Press, Inc., New York, 1983.   Google Scholar
[16]

R. Ibrahim, Sharing delay information in service systems: A literature survey, Queueing Systems, 89 (2018), 49-79.  doi: 10.1007/s11134-018-9577-y.  Google Scholar

[17]

L. LiJ. T. Wang and F. Zhang, Equilibrium customer strategies in Markovian queues with partial breakdowns, Computers & Industrial Engineering, 66 (2013), 751-757.  doi: 10.1016/j.cie.2013.09.023.  Google Scholar

[18]

Y. MaW.-Q. Liu and J.-H. Li, Equilibrium balking behavior in the Geo/Geo/1 queueing system with multiple vacations, Applied Mathematical Modelling, 37 (2013), 3861-3878.  doi: 10.1016/j.apm.2012.08.017.  Google Scholar

[19]

P. Naor, The regulation of queue size by levying tolls, Econometrica, 37 (1969), 15-24.  doi: 10.2307/1909200.  Google Scholar

[20]

G. Panda and V. Goswami, Effect of information on the strategic behavior of customers in a discrete-time bulk service queue, Journal of Industrial & Management Optimization, 708–715. doi: 10.3934/jimo.2019007.  Google Scholar

[21]

G. Panda, V. Goswami and A. D. Banik, Equilibrium and socially optimal balking strategies in Markovian queues with vacations and sequential abandonment, Asia-Pacific Journal of Operational Research, 33 (2016), 1650036, 34 pp. doi: 10.1142/S0217595916500366.  Google Scholar

[22]

G. PandaV. Goswami and A. D. Banik, Equilibrium behaviour and social optimization in Markovian queues with impatient customers and variant of working vacations, RAIRO-Operations Research, 51 (2017), 685-707.  doi: 10.1051/ro/2016056.  Google Scholar

[23]

R. ShoneV. A. Knight and J. E. Williams, Comparisons between observable and unobservable M/M/1 queues with respect to optimal customer behavior, European Journal of Operational Research, 227 (2013), 133-141.  doi: 10.1016/j.ejor.2012.12.016.  Google Scholar

[24]

W. SunS. Y. Li and E. Cheng-Guo, Equilibrium and optimal balking strategies of customers in Markovian queues with multiple vacations and $N$-policy, Applied Mathematical Modelling, 40 (2016), 284-301.  doi: 10.1016/j.apm.2015.04.045.  Google Scholar

[25]

T. T. YangJ. T. Wang and F. Zhang, Equilibrium balking strategies in the Geo/Geo/1 queues with server breakdowns and repairs, Quality Technology & Quantitative Management, 11 (2014), 231-243.  doi: 10.1080/16843703.2014.11673341.  Google Scholar

[26]

M. M. Yu and A. S. Alfa, Strategic queueing behavior for individual and social optimization in managing discrete time working vacation queue with Bernoulli interruption schedule, Computers & Operations Research, 73 (2016), 43-55.  doi: 10.1016/j.cor.2016.03.011.  Google Scholar

Figure 1.  Various time epochs in late-arrival system with delayed access (LAS-DA)
Figure 2.  State transition diagram of the Geo/Geo/1/$ n_e $ queueing model
Figure 3.  State transition diagram of the Geo/Geo/1 queue with joining probability $ f $
Figure 4.  Dependence of threshold strategies on $ R/C $ for $ \lambda = 0.2, \mu = 0.5 $
Figure 5.  Dependence of threshold strategies on $ \mu $ for $ \lambda = 0.2, R = 30, C = 1 $
Figure 6.  Dependence of threshold strategies on $ \lambda $ for $ R = 30, \mu = 0.5, C = 1 $
Figure 7.  PoA vs $ \lambda $ in the observable queue with parameters $ R = 30, C = 1, \mu = 0.5 $
Figure 8.  PoA vs $ \mu $ in the observable queue with parameters $ \lambda = 0.5, R = 30, C = 1 $
Figure 9.  $ R/C $ vs mixed strategies for the unobservable case with $ \lambda = 0.2, \mu = 0.5 $
Figure 10.  $ \mu $ vs mixed strategies for the unobservable case with $ \lambda = 0.5, R = 30, C = 1 $
Figure 11.  $ \lambda $ vs mixed strategies for the unobservable case with $ R = 10, \mu = 0.6, C = 5 $
Figure 12.  $ \lambda $ vs socially equilibrium benefit for the observable case with $ R = 30, C = 1, \mu = 0.5 $
Figure 13.  Social welfare under a profit maximizing fee for the observable case with $ R = 30, C = 1, \mu = 0.5 $
Figure 14.  Selfish optimal joining rate comparison
Figure 15.  Socially optimal joining rate comparison
Table 1.  Equilibrium joining strategy
Case $ f_e $ $ \lambda_e $ $ W_e $
$ \lambda\le \mu-\frac{C\bar{\mu}}{R-C} $ $ 1 $ $ \lambda $ $ \frac{\bar{\lambda}}{\mu-\lambda} $
$ 0\le \mu-\frac{C\bar{\mu}}{R-C} < \lambda $ $ \frac{1}{\lambda}(\mu-\frac{C\bar{\mu}}{R-C}) $ $ \mu-\frac{C\bar{\mu}}{R-C} $ $ \frac{R}{C} $
$ \mu-\frac{C\bar{\mu}}{R-C} <0 $ 0 0 $ \frac{1}{\mu} $
Case $ f_e $ $ \lambda_e $ $ W_e $
$ \lambda\le \mu-\frac{C\bar{\mu}}{R-C} $ $ 1 $ $ \lambda $ $ \frac{\bar{\lambda}}{\mu-\lambda} $
$ 0\le \mu-\frac{C\bar{\mu}}{R-C} < \lambda $ $ \frac{1}{\lambda}(\mu-\frac{C\bar{\mu}}{R-C}) $ $ \mu-\frac{C\bar{\mu}}{R-C} $ $ \frac{R}{C} $
$ \mu-\frac{C\bar{\mu}}{R-C} <0 $ 0 0 $ \frac{1}{\mu} $
Table 2.  Socially optimal joining strategy
Case $ f_s $ $ \lambda_s $ $ W_s $
$ \lambda\le \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ 1 $ $ \lambda $ $ \frac{\bar{\lambda}}{\mu-\lambda} $
$ \lambda > \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ \frac{\mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}}}{\lambda} $ $ \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ 1+\bar{\mu}\sqrt{\frac{R-C}{C\mu\bar{\mu}}} $
Case $ f_s $ $ \lambda_s $ $ W_s $
$ \lambda\le \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ 1 $ $ \lambda $ $ \frac{\bar{\lambda}}{\mu-\lambda} $
$ \lambda > \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ \frac{\mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}}}{\lambda} $ $ \mu-\sqrt{\frac{C\mu\bar{\mu}}{R-C}} $ $ 1+\bar{\mu}\sqrt{\frac{R-C}{C\mu\bar{\mu}}} $
[1]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[2]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[3]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 107-120. doi: 10.3934/dcdsb.2020264

[4]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[5]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[6]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[7]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[8]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[9]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[10]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[11]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[12]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[13]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[14]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[15]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[16]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[17]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[18]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[19]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[20]

Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021010

2019 Impact Factor: 1.366

Article outline

Figures and Tables

[Back to Top]