• Previous Article
    Biobjective optimization over the efficient set of multiobjective integer programming problem
  • JIMO Home
  • This Issue
  • Next Article
    An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information
doi: 10.3934/jimo.2019114

Optimal investment for an insurer under liquid reserves

School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, China

* Corresponding author: Haili Yuan

Received  January 2019 Revised  March 2019 Published  September 2019

Fund Project: Supported by National Natural Science Foundation of China (Nos. 11201352, 11771343)

In this paper, we study the optimal investment problem for an insurer, who is allowed to invest in a financial market which consists of $ N $ risky securities modeled by an $ N $-dimensional Itô process. The surplus of the insurer is modeled by a general risk model. For the insurer's wealth, some money (called liquid reserves) can only be used to cope with risk, and can not be invested in the financial market. We suggest that the liquid reserve is a proportion of the total claim amount. By the martingale approach, we derive the optimal strategies for the CARA and the quadratic utilities, respectively.

Citation: Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019114
References:
[1]

H. AlbrecherC. ConstantinescuZ. PalmowskiG. Regensburger and M. Rosenkranz, Exact and asymptotic results for insurance risk models with surplus-dependent premiums, SIAM Journal on Applied Mathematics, 73 (2013), 47-66.  doi: 10.1137/110852000.  Google Scholar

[2]

S. Asmussen and H. Albrecher, Ruin Probabilities, Second edition, Advanced Series on Statistical Science & Applied Probability, 14. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010. doi: 10.1142/9789814282536.  Google Scholar

[3]

T. BelkinaC. HippS. Z. Luo and M. Taksar, Optimal constrained investment in the Cramer-Lundberg model, Scandinavian Actuarial Journal, 5 (2014), 383-404.  doi: 10.1080/03461238.2012.699001.  Google Scholar

[4]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.  Google Scholar

[5]

J. CaiR. H. Feng and G. E. Willmot, The compound Poisson surplus model with interest and liquid reserves: Analysis of the Gerber-Shiu discounted penalty function, Methodology and Computing in Applied Probability, 11 (2009), 401-423.  doi: 10.1007/s11009-007-9050-6.  Google Scholar

[6]

J. CaiR. H. Feng and G. E. Willmot, Analysis of the compound Poisson surplus model with liquid reserves, interest and dividends, Astin Bulletin, 39 (2009), 225-247.  doi: 10.2143/AST.39.1.2038063.  Google Scholar

[7]

E. C. K. Cheung and D. Landriault, On a risk model with surplus-dependent premium and tax rates, Methodology and Computing in Applied Probability, 14 (2012), 233-251.  doi: 10.1007/s11009-010-9197-4.  Google Scholar

[8]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.  Google Scholar

[9]

P. Embrechts and H. Schmidli, Ruin estimation for a general insurance risk model, Advances in Applied Probability, 26 (1994), 404-422.  doi: 10.2307/1427443.  Google Scholar

[10]

H. U. Gerber and E. S. W. Shiu, The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin, Insurance: Mathematics and Economics, 21 (1997), 129-137.  doi: 10.1016/S0167-6687(97)00027-9.  Google Scholar

[11]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.  doi: 10.1080/10920277.1998.10595671.  Google Scholar

[12]

W. J. Guo, Optimal portfolio choice for an insurer with loss aversion, Insurance: Mathematics and Economics, 58 (2014), 217-222.  doi: 10.1016/j.insmatheco.2014.07.004.  Google Scholar

[13]

C. Hipp and M. Plum, Optimal investment for insurers, Insurance: Mathematics and Economics, 27 (2000), 215-228.  doi: 10.1016/S0167-6687(00)00049-4.  Google Scholar

[14]

I. KaratzasJ. P. LehoczkyS. E. Shreve and G.-L. Xu, Martingale and duality methods for utility maximization in incomplete markets, SIAM Journal on Control and Optimization, 29 (1991), 702-730.  doi: 10.1137/0329039.  Google Scholar

[15]

X. S. Lin and G. E. Willmot, The moments of the time of ruin, the surplus before ruin, and the deficit at ruin, Insurance: Mathematics and Economics, 27 (2000), 19-44.  doi: 10.1016/S0167-6687(00)00038-X.  Google Scholar

[16]

C. S. Liu and H. L. Yang, Optimal investment for an insurer to minimize its probability of ruin, North American Actuarial Journal, 8 (2004), 11-31.  doi: 10.1080/10920277.2004.10596134.  Google Scholar

[17]

S. Z. Luo, Ruin minimization for insurers with borrowing constraints, North American Actuarial Journal, 12 (2008), 143-174.  doi: 10.1080/10920277.2008.10597508.  Google Scholar

[18]

H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91.   Google Scholar

[19]

R. S. Perera, Optimal consumption, investment and insurance with insurable risk for an investor in a Lévy market, Insurance: Mathematics and Economics, 46 (2010), 479-484.  doi: 10.1016/j.insmatheco.2010.01.005.  Google Scholar

[20]

M. Schweizer, Approximating random variables by stochastic integrals, The Annals of Probability, 22 (1994), 1536-1575.  doi: 10.1214/aop/1176988611.  Google Scholar

[21]

Z. W. WangJ. M. Xia and L. H. Zhang, Optimal investment for an insurer: The martingale approach, Insurance: Mathematics and Economics, 40 (2007), 322-334.  doi: 10.1016/j.insmatheco.2006.05.003.  Google Scholar

[22]

S. X. Xie, Continuous-time mean-variance portfolio selection with liability and regime switching, Insurance: Mathematics and Economics, 45 (2009), 148-155.  doi: 10.1016/j.insmatheco.2009.05.005.  Google Scholar

[23]

H. L. Yuan and Y. J. Hu, The compound Poisson risk model with interest and a threshold strategy, Stochastic Models, 25 (2009), 197-220.  doi: 10.1080/15326340902869846.  Google Scholar

[24]

X.-L. ZhangK.-C. Zhang and X.-J. Yu, Optimal proportional reinsurance and investment with transaction costs, Ⅰ: Maximizing the terminal wealth, Insurance: Mathematics and Economics, 44 (2009), 473-478.  doi: 10.1016/j.insmatheco.2009.01.004.  Google Scholar

[25]

J. M. ZhouX. Q. Yang and J. Y. Guo, Portfolio selection and risk control for an insurer in the Lévy market under mean-variance criterion, Statistics and Probability letters, 126 (2017), 139-149.  doi: 10.1016/j.spl.2017.03.008.  Google Scholar

[26]

Q. Zhou, Optimal investment for an insurer in the Lévy market: The martingale approach, Statistics and Probability Letters, 79 (2009), 1602-1607.  doi: 10.1016/j.spl.2009.03.027.  Google Scholar

[27]

B. Zou and A. Cadenillas, Optimal investment and risk control policies for an insurer: Expected utility maximization, Insurance: Mathematics and Economics, 58 (2014), 57-67.  doi: 10.1016/j.insmatheco.2014.06.006.  Google Scholar

show all references

References:
[1]

H. AlbrecherC. ConstantinescuZ. PalmowskiG. Regensburger and M. Rosenkranz, Exact and asymptotic results for insurance risk models with surplus-dependent premiums, SIAM Journal on Applied Mathematics, 73 (2013), 47-66.  doi: 10.1137/110852000.  Google Scholar

[2]

S. Asmussen and H. Albrecher, Ruin Probabilities, Second edition, Advanced Series on Statistical Science & Applied Probability, 14. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010. doi: 10.1142/9789814282536.  Google Scholar

[3]

T. BelkinaC. HippS. Z. Luo and M. Taksar, Optimal constrained investment in the Cramer-Lundberg model, Scandinavian Actuarial Journal, 5 (2014), 383-404.  doi: 10.1080/03461238.2012.699001.  Google Scholar

[4]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.  Google Scholar

[5]

J. CaiR. H. Feng and G. E. Willmot, The compound Poisson surplus model with interest and liquid reserves: Analysis of the Gerber-Shiu discounted penalty function, Methodology and Computing in Applied Probability, 11 (2009), 401-423.  doi: 10.1007/s11009-007-9050-6.  Google Scholar

[6]

J. CaiR. H. Feng and G. E. Willmot, Analysis of the compound Poisson surplus model with liquid reserves, interest and dividends, Astin Bulletin, 39 (2009), 225-247.  doi: 10.2143/AST.39.1.2038063.  Google Scholar

[7]

E. C. K. Cheung and D. Landriault, On a risk model with surplus-dependent premium and tax rates, Methodology and Computing in Applied Probability, 14 (2012), 233-251.  doi: 10.1007/s11009-010-9197-4.  Google Scholar

[8]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.  Google Scholar

[9]

P. Embrechts and H. Schmidli, Ruin estimation for a general insurance risk model, Advances in Applied Probability, 26 (1994), 404-422.  doi: 10.2307/1427443.  Google Scholar

[10]

H. U. Gerber and E. S. W. Shiu, The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin, Insurance: Mathematics and Economics, 21 (1997), 129-137.  doi: 10.1016/S0167-6687(97)00027-9.  Google Scholar

[11]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.  doi: 10.1080/10920277.1998.10595671.  Google Scholar

[12]

W. J. Guo, Optimal portfolio choice for an insurer with loss aversion, Insurance: Mathematics and Economics, 58 (2014), 217-222.  doi: 10.1016/j.insmatheco.2014.07.004.  Google Scholar

[13]

C. Hipp and M. Plum, Optimal investment for insurers, Insurance: Mathematics and Economics, 27 (2000), 215-228.  doi: 10.1016/S0167-6687(00)00049-4.  Google Scholar

[14]

I. KaratzasJ. P. LehoczkyS. E. Shreve and G.-L. Xu, Martingale and duality methods for utility maximization in incomplete markets, SIAM Journal on Control and Optimization, 29 (1991), 702-730.  doi: 10.1137/0329039.  Google Scholar

[15]

X. S. Lin and G. E. Willmot, The moments of the time of ruin, the surplus before ruin, and the deficit at ruin, Insurance: Mathematics and Economics, 27 (2000), 19-44.  doi: 10.1016/S0167-6687(00)00038-X.  Google Scholar

[16]

C. S. Liu and H. L. Yang, Optimal investment for an insurer to minimize its probability of ruin, North American Actuarial Journal, 8 (2004), 11-31.  doi: 10.1080/10920277.2004.10596134.  Google Scholar

[17]

S. Z. Luo, Ruin minimization for insurers with borrowing constraints, North American Actuarial Journal, 12 (2008), 143-174.  doi: 10.1080/10920277.2008.10597508.  Google Scholar

[18]

H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91.   Google Scholar

[19]

R. S. Perera, Optimal consumption, investment and insurance with insurable risk for an investor in a Lévy market, Insurance: Mathematics and Economics, 46 (2010), 479-484.  doi: 10.1016/j.insmatheco.2010.01.005.  Google Scholar

[20]

M. Schweizer, Approximating random variables by stochastic integrals, The Annals of Probability, 22 (1994), 1536-1575.  doi: 10.1214/aop/1176988611.  Google Scholar

[21]

Z. W. WangJ. M. Xia and L. H. Zhang, Optimal investment for an insurer: The martingale approach, Insurance: Mathematics and Economics, 40 (2007), 322-334.  doi: 10.1016/j.insmatheco.2006.05.003.  Google Scholar

[22]

S. X. Xie, Continuous-time mean-variance portfolio selection with liability and regime switching, Insurance: Mathematics and Economics, 45 (2009), 148-155.  doi: 10.1016/j.insmatheco.2009.05.005.  Google Scholar

[23]

H. L. Yuan and Y. J. Hu, The compound Poisson risk model with interest and a threshold strategy, Stochastic Models, 25 (2009), 197-220.  doi: 10.1080/15326340902869846.  Google Scholar

[24]

X.-L. ZhangK.-C. Zhang and X.-J. Yu, Optimal proportional reinsurance and investment with transaction costs, Ⅰ: Maximizing the terminal wealth, Insurance: Mathematics and Economics, 44 (2009), 473-478.  doi: 10.1016/j.insmatheco.2009.01.004.  Google Scholar

[25]

J. M. ZhouX. Q. Yang and J. Y. Guo, Portfolio selection and risk control for an insurer in the Lévy market under mean-variance criterion, Statistics and Probability letters, 126 (2017), 139-149.  doi: 10.1016/j.spl.2017.03.008.  Google Scholar

[26]

Q. Zhou, Optimal investment for an insurer in the Lévy market: The martingale approach, Statistics and Probability Letters, 79 (2009), 1602-1607.  doi: 10.1016/j.spl.2009.03.027.  Google Scholar

[27]

B. Zou and A. Cadenillas, Optimal investment and risk control policies for an insurer: Expected utility maximization, Insurance: Mathematics and Economics, 58 (2014), 57-67.  doi: 10.1016/j.insmatheco.2014.06.006.  Google Scholar

[1]

Alexander J. Zaslavski. Good programs in the RSS model without concavity of a utility function. Journal of Industrial & Management Optimization, 2006, 2 (4) : 399-423. doi: 10.3934/jimo.2006.2.399

[2]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[3]

Shaolin Ji, Xiaomin Shi. Recursive utility optimization with concave coefficients. Mathematical Control & Related Fields, 2018, 8 (3&4) : 753-775. doi: 10.3934/mcrf.2018033

[4]

Azam Chaudhry, Rehana Naz. Closed-form solutions for the Lucas-Uzawa growth model with logarithmic utility preferences via the partial Hamiltonian approach. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 643-654. doi: 10.3934/dcdss.2018039

[5]

Lin Xu, Rongming Wang, Dingjun Yao. On maximizing the expected terminal utility by investment and reinsurance. Journal of Industrial & Management Optimization, 2008, 4 (4) : 801-815. doi: 10.3934/jimo.2008.4.801

[6]

Nicholas Westray, Harry Zheng. Constrained nonsmooth utility maximization on the positive real line. Mathematical Control & Related Fields, 2015, 5 (3) : 679-695. doi: 10.3934/mcrf.2015.5.679

[7]

Lv Chen, Hailiang Yang. Optimal reinsurance and investment strategy with two piece utility function. Journal of Industrial & Management Optimization, 2017, 13 (2) : 737-755. doi: 10.3934/jimo.2016044

[8]

Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu. The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences & Engineering, 2007, 4 (4) : 739-754. doi: 10.3934/mbe.2007.4.739

[9]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control & Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

[10]

Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial & Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033

[11]

Shiyong Li, Wei Sun, Quan-Lin Li. Utility maximization for bandwidth allocation in peer-to-peer file-sharing networks. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2018194

[12]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[13]

Zhimin Zhang. On a risk model with randomized dividend-decision times. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1041-1058. doi: 10.3934/jimo.2014.10.1041

[14]

Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997

[15]

Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317

[16]

Tiziana Giorgi, Feras Yousef. Analysis of a model for bent-core liquid crystals columnar phases. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2001-2026. doi: 10.3934/dcdsb.2015.20.2001

[17]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[18]

Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081

[19]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[20]

Zhimin Zhang, Eric C. K. Cheung. A note on a Lévy insurance risk model under periodic dividend decisions. Journal of Industrial & Management Optimization, 2018, 14 (1) : 35-63. doi: 10.3934/jimo.2017036

2018 Impact Factor: 1.025

Article outline

[Back to Top]