January  2021, 17(1): 339-355. doi: 10.3934/jimo.2019114

Optimal investment for an insurer under liquid reserves

School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, China

* Corresponding author: Haili Yuan

Received  January 2019 Revised  March 2019 Published  January 2021 Early access  September 2019

Fund Project: Supported by National Natural Science Foundation of China (Nos. 11201352, 11771343)

In this paper, we study the optimal investment problem for an insurer, who is allowed to invest in a financial market which consists of $ N $ risky securities modeled by an $ N $-dimensional Itô process. The surplus of the insurer is modeled by a general risk model. For the insurer's wealth, some money (called liquid reserves) can only be used to cope with risk, and can not be invested in the financial market. We suggest that the liquid reserve is a proportion of the total claim amount. By the martingale approach, we derive the optimal strategies for the CARA and the quadratic utilities, respectively.

Citation: Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial and Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114
References:
[1]

H. AlbrecherC. ConstantinescuZ. PalmowskiG. Regensburger and M. Rosenkranz, Exact and asymptotic results for insurance risk models with surplus-dependent premiums, SIAM Journal on Applied Mathematics, 73 (2013), 47-66.  doi: 10.1137/110852000.

[2]

S. Asmussen and H. Albrecher, Ruin Probabilities, Second edition, Advanced Series on Statistical Science & Applied Probability, 14. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010. doi: 10.1142/9789814282536.

[3]

T. BelkinaC. HippS. Z. Luo and M. Taksar, Optimal constrained investment in the Cramer-Lundberg model, Scandinavian Actuarial Journal, 5 (2014), 383-404.  doi: 10.1080/03461238.2012.699001.

[4]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.

[5]

J. CaiR. H. Feng and G. E. Willmot, The compound Poisson surplus model with interest and liquid reserves: Analysis of the Gerber-Shiu discounted penalty function, Methodology and Computing in Applied Probability, 11 (2009), 401-423.  doi: 10.1007/s11009-007-9050-6.

[6]

J. CaiR. H. Feng and G. E. Willmot, Analysis of the compound Poisson surplus model with liquid reserves, interest and dividends, Astin Bulletin, 39 (2009), 225-247.  doi: 10.2143/AST.39.1.2038063.

[7]

E. C. K. Cheung and D. Landriault, On a risk model with surplus-dependent premium and tax rates, Methodology and Computing in Applied Probability, 14 (2012), 233-251.  doi: 10.1007/s11009-010-9197-4.

[8]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.

[9]

P. Embrechts and H. Schmidli, Ruin estimation for a general insurance risk model, Advances in Applied Probability, 26 (1994), 404-422.  doi: 10.2307/1427443.

[10]

H. U. Gerber and E. S. W. Shiu, The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin, Insurance: Mathematics and Economics, 21 (1997), 129-137.  doi: 10.1016/S0167-6687(97)00027-9.

[11]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.  doi: 10.1080/10920277.1998.10595671.

[12]

W. J. Guo, Optimal portfolio choice for an insurer with loss aversion, Insurance: Mathematics and Economics, 58 (2014), 217-222.  doi: 10.1016/j.insmatheco.2014.07.004.

[13]

C. Hipp and M. Plum, Optimal investment for insurers, Insurance: Mathematics and Economics, 27 (2000), 215-228.  doi: 10.1016/S0167-6687(00)00049-4.

[14]

I. KaratzasJ. P. LehoczkyS. E. Shreve and G.-L. Xu, Martingale and duality methods for utility maximization in incomplete markets, SIAM Journal on Control and Optimization, 29 (1991), 702-730.  doi: 10.1137/0329039.

[15]

X. S. Lin and G. E. Willmot, The moments of the time of ruin, the surplus before ruin, and the deficit at ruin, Insurance: Mathematics and Economics, 27 (2000), 19-44.  doi: 10.1016/S0167-6687(00)00038-X.

[16]

C. S. Liu and H. L. Yang, Optimal investment for an insurer to minimize its probability of ruin, North American Actuarial Journal, 8 (2004), 11-31.  doi: 10.1080/10920277.2004.10596134.

[17]

S. Z. Luo, Ruin minimization for insurers with borrowing constraints, North American Actuarial Journal, 12 (2008), 143-174.  doi: 10.1080/10920277.2008.10597508.

[18]

H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91. 

[19]

R. S. Perera, Optimal consumption, investment and insurance with insurable risk for an investor in a Lévy market, Insurance: Mathematics and Economics, 46 (2010), 479-484.  doi: 10.1016/j.insmatheco.2010.01.005.

[20]

M. Schweizer, Approximating random variables by stochastic integrals, The Annals of Probability, 22 (1994), 1536-1575.  doi: 10.1214/aop/1176988611.

[21]

Z. W. WangJ. M. Xia and L. H. Zhang, Optimal investment for an insurer: The martingale approach, Insurance: Mathematics and Economics, 40 (2007), 322-334.  doi: 10.1016/j.insmatheco.2006.05.003.

[22]

S. X. Xie, Continuous-time mean-variance portfolio selection with liability and regime switching, Insurance: Mathematics and Economics, 45 (2009), 148-155.  doi: 10.1016/j.insmatheco.2009.05.005.

[23]

H. L. Yuan and Y. J. Hu, The compound Poisson risk model with interest and a threshold strategy, Stochastic Models, 25 (2009), 197-220.  doi: 10.1080/15326340902869846.

[24]

X.-L. ZhangK.-C. Zhang and X.-J. Yu, Optimal proportional reinsurance and investment with transaction costs, Ⅰ: Maximizing the terminal wealth, Insurance: Mathematics and Economics, 44 (2009), 473-478.  doi: 10.1016/j.insmatheco.2009.01.004.

[25]

J. M. ZhouX. Q. Yang and J. Y. Guo, Portfolio selection and risk control for an insurer in the Lévy market under mean-variance criterion, Statistics and Probability letters, 126 (2017), 139-149.  doi: 10.1016/j.spl.2017.03.008.

[26]

Q. Zhou, Optimal investment for an insurer in the Lévy market: The martingale approach, Statistics and Probability Letters, 79 (2009), 1602-1607.  doi: 10.1016/j.spl.2009.03.027.

[27]

B. Zou and A. Cadenillas, Optimal investment and risk control policies for an insurer: Expected utility maximization, Insurance: Mathematics and Economics, 58 (2014), 57-67.  doi: 10.1016/j.insmatheco.2014.06.006.

show all references

References:
[1]

H. AlbrecherC. ConstantinescuZ. PalmowskiG. Regensburger and M. Rosenkranz, Exact and asymptotic results for insurance risk models with surplus-dependent premiums, SIAM Journal on Applied Mathematics, 73 (2013), 47-66.  doi: 10.1137/110852000.

[2]

S. Asmussen and H. Albrecher, Ruin Probabilities, Second edition, Advanced Series on Statistical Science & Applied Probability, 14. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010. doi: 10.1142/9789814282536.

[3]

T. BelkinaC. HippS. Z. Luo and M. Taksar, Optimal constrained investment in the Cramer-Lundberg model, Scandinavian Actuarial Journal, 5 (2014), 383-404.  doi: 10.1080/03461238.2012.699001.

[4]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.

[5]

J. CaiR. H. Feng and G. E. Willmot, The compound Poisson surplus model with interest and liquid reserves: Analysis of the Gerber-Shiu discounted penalty function, Methodology and Computing in Applied Probability, 11 (2009), 401-423.  doi: 10.1007/s11009-007-9050-6.

[6]

J. CaiR. H. Feng and G. E. Willmot, Analysis of the compound Poisson surplus model with liquid reserves, interest and dividends, Astin Bulletin, 39 (2009), 225-247.  doi: 10.2143/AST.39.1.2038063.

[7]

E. C. K. Cheung and D. Landriault, On a risk model with surplus-dependent premium and tax rates, Methodology and Computing in Applied Probability, 14 (2012), 233-251.  doi: 10.1007/s11009-010-9197-4.

[8]

R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman and Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004.

[9]

P. Embrechts and H. Schmidli, Ruin estimation for a general insurance risk model, Advances in Applied Probability, 26 (1994), 404-422.  doi: 10.2307/1427443.

[10]

H. U. Gerber and E. S. W. Shiu, The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin, Insurance: Mathematics and Economics, 21 (1997), 129-137.  doi: 10.1016/S0167-6687(97)00027-9.

[11]

H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 2 (1998), 48-78.  doi: 10.1080/10920277.1998.10595671.

[12]

W. J. Guo, Optimal portfolio choice for an insurer with loss aversion, Insurance: Mathematics and Economics, 58 (2014), 217-222.  doi: 10.1016/j.insmatheco.2014.07.004.

[13]

C. Hipp and M. Plum, Optimal investment for insurers, Insurance: Mathematics and Economics, 27 (2000), 215-228.  doi: 10.1016/S0167-6687(00)00049-4.

[14]

I. KaratzasJ. P. LehoczkyS. E. Shreve and G.-L. Xu, Martingale and duality methods for utility maximization in incomplete markets, SIAM Journal on Control and Optimization, 29 (1991), 702-730.  doi: 10.1137/0329039.

[15]

X. S. Lin and G. E. Willmot, The moments of the time of ruin, the surplus before ruin, and the deficit at ruin, Insurance: Mathematics and Economics, 27 (2000), 19-44.  doi: 10.1016/S0167-6687(00)00038-X.

[16]

C. S. Liu and H. L. Yang, Optimal investment for an insurer to minimize its probability of ruin, North American Actuarial Journal, 8 (2004), 11-31.  doi: 10.1080/10920277.2004.10596134.

[17]

S. Z. Luo, Ruin minimization for insurers with borrowing constraints, North American Actuarial Journal, 12 (2008), 143-174.  doi: 10.1080/10920277.2008.10597508.

[18]

H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91. 

[19]

R. S. Perera, Optimal consumption, investment and insurance with insurable risk for an investor in a Lévy market, Insurance: Mathematics and Economics, 46 (2010), 479-484.  doi: 10.1016/j.insmatheco.2010.01.005.

[20]

M. Schweizer, Approximating random variables by stochastic integrals, The Annals of Probability, 22 (1994), 1536-1575.  doi: 10.1214/aop/1176988611.

[21]

Z. W. WangJ. M. Xia and L. H. Zhang, Optimal investment for an insurer: The martingale approach, Insurance: Mathematics and Economics, 40 (2007), 322-334.  doi: 10.1016/j.insmatheco.2006.05.003.

[22]

S. X. Xie, Continuous-time mean-variance portfolio selection with liability and regime switching, Insurance: Mathematics and Economics, 45 (2009), 148-155.  doi: 10.1016/j.insmatheco.2009.05.005.

[23]

H. L. Yuan and Y. J. Hu, The compound Poisson risk model with interest and a threshold strategy, Stochastic Models, 25 (2009), 197-220.  doi: 10.1080/15326340902869846.

[24]

X.-L. ZhangK.-C. Zhang and X.-J. Yu, Optimal proportional reinsurance and investment with transaction costs, Ⅰ: Maximizing the terminal wealth, Insurance: Mathematics and Economics, 44 (2009), 473-478.  doi: 10.1016/j.insmatheco.2009.01.004.

[25]

J. M. ZhouX. Q. Yang and J. Y. Guo, Portfolio selection and risk control for an insurer in the Lévy market under mean-variance criterion, Statistics and Probability letters, 126 (2017), 139-149.  doi: 10.1016/j.spl.2017.03.008.

[26]

Q. Zhou, Optimal investment for an insurer in the Lévy market: The martingale approach, Statistics and Probability Letters, 79 (2009), 1602-1607.  doi: 10.1016/j.spl.2009.03.027.

[27]

B. Zou and A. Cadenillas, Optimal investment and risk control policies for an insurer: Expected utility maximization, Insurance: Mathematics and Economics, 58 (2014), 57-67.  doi: 10.1016/j.insmatheco.2014.06.006.

[1]

Alexander J. Zaslavski. Good programs in the RSS model without concavity of a utility function. Journal of Industrial and Management Optimization, 2006, 2 (4) : 399-423. doi: 10.3934/jimo.2006.2.399

[2]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[3]

Jingzhen Liu, Yike Wang, Ming Zhou. Utility maximization with habit formation of interaction. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1451-1469. doi: 10.3934/jimo.2020029

[4]

Shaolin Ji, Xiaomin Shi. Recursive utility optimization with concave coefficients. Mathematical Control and Related Fields, 2018, 8 (3&4) : 753-775. doi: 10.3934/mcrf.2018033

[5]

Yan Zhang, Peibiao Zhao, Xinghu Teng, Lei Mao. Optimal reinsurance and investment strategies for an insurer and a reinsurer under Hestons SV model: HARA utility and Legendre transform. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2139-2159. doi: 10.3934/jimo.2020062

[6]

Azam Chaudhry, Rehana Naz. Closed-form solutions for the Lucas-Uzawa growth model with logarithmic utility preferences via the partial Hamiltonian approach. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 643-654. doi: 10.3934/dcdss.2018039

[7]

Lin Xu, Rongming Wang, Dingjun Yao. On maximizing the expected terminal utility by investment and reinsurance. Journal of Industrial and Management Optimization, 2008, 4 (4) : 801-815. doi: 10.3934/jimo.2008.4.801

[8]

Nicholas Westray, Harry Zheng. Constrained nonsmooth utility maximization on the positive real line. Mathematical Control and Related Fields, 2015, 5 (3) : 679-695. doi: 10.3934/mcrf.2015.5.679

[9]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial and Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[10]

Zeyang Wang, Ovanes Petrosian. On class of non-transferable utility cooperative differential games with continuous updating. Journal of Dynamics and Games, 2020, 7 (4) : 291-302. doi: 10.3934/jdg.2020020

[11]

Lv Chen, Hailiang Yang. Optimal reinsurance and investment strategy with two piece utility function. Journal of Industrial and Management Optimization, 2017, 13 (2) : 737-755. doi: 10.3934/jimo.2016044

[12]

Zilan Liu, Yijun Wang, Ya Huang, Jieming Zhou. Optimal portfolios for the DC pension fund with mispricing under the HARA utility framework. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2021228

[13]

Pengxu Xie, Lihua Bai, Huayue Zhang. Optimal proportional reinsurance and pairs trading under exponential utility criterion for the insurer. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022020

[14]

Yan Zhang, Yonghong Wu, Haixiang Yao. Optimal health insurance with constraints under utility of health, wealth and income. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1519-1540. doi: 10.3934/jimo.2021031

[15]

Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial and Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033

[16]

Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu. The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences & Engineering, 2007, 4 (4) : 739-754. doi: 10.3934/mbe.2007.4.739

[17]

Shiyong Li, Wei Sun, Quan-Lin Li. Utility maximization for bandwidth allocation in peer-to-peer file-sharing networks. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1099-1117. doi: 10.3934/jimo.2018194

[18]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control and Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

[19]

Yu-Hsien Liao. Axiomatic results and dynamic processes for two weighted indexes under fuzzy transferable-utility behavior. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 1-14. doi: 10.3934/naco.2021047

[20]

Jingzhen Liu, Shiqi Yan, Shan Jiang, Jiaqin Wei. Optimal investment, consumption and life insurance strategies under stochastic differential utility with habit formation. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022040

2020 Impact Factor: 1.801

Article outline

[Back to Top]