
-
Previous Article
Angel capitalists exit decisions under information asymmetry: IPO or acquisitions
- JIMO Home
- This Issue
-
Next Article
Optimal investment for an insurer under liquid reserves
The point-wise convergence of shifted symmetric higher order power method
1. | School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
2. | School of Mathematics and Statistics, Kashi University, Kashi 844006, China |
Shifted symmetric higher-order power method (SS-HOPM) is an effective method of computing tensor eigenpairs. However the point-wise convergence of SS-HOPM has not been proven yet. In this paper, we provide a solid proof of the point-wise convergence of SS-HOPM via Łojasiewicz inequality. In particular, we establish a mapping from the sequence generated by the algorithm to a specially defined sequence. Using Łojasiewicz inequality, we prove the convergence of the new sequence, then the original sequence is convergent based on the relation of two sequences.
References:
[1] |
A. Uschmajew,
A new convergence proof for the higher-order power method and generalizations, Pac. J. Optim., 11 (2015), 309-321.
|
[2] |
A. T. Erdogan,
On the convergence of ICA algorithms with symmetric orthogonalization, IEEE Trans. Signal Process., 57 (2009), 2209-2221.
doi: 10.1109/TSP.2009.2015114. |
[3] |
D. Cartwright and B. Sturmfels,
The number of eigenvalues of a tensor, Linear Alg. Appl., 438 (2013), 942-952.
doi: 10.1016/j.laa.2011.05.040. |
[4] |
E. Kofidis and P. A. Regalia,
On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 863-884.
doi: 10.1137/S0895479801387413. |
[5] |
G. H. Golub and C. F. Van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. |
[6] |
L. De Lathauwer, B. De Moor and J. Vandewalle,
On the best rank-1 and rank-($r_1$, $r_2$, ..., $r_N$) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.
doi: 10.1137/S0895479898346995. |
[7] |
L. Lim, Singular values and eigenvalues of tensors: A variational approach, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005., IEEE, (2005), 129-132. Google Scholar |
[8] |
L. Q. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[9] |
L. Q. Qi and K. L. Teo,
Multivariate polynomial minimization and its application in signal processing, J. Glob. Optim., 26 (2013), 419-433.
doi: 10.1023/A:1024778309049. |
[10] |
L. Q. Qi, W. Y. Sun and Y. J. Wang,
Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526.
doi: 10.1007/s11464-007-0031-4. |
[11] |
M. Ng, L. Q. Qi and G. L. Zhou,
Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.
doi: 10.1137/09074838X. |
[12] |
P.-A. Absil, R. Manhony and B. Andrews,
Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547.
doi: 10.1137/040605266. |
[13] |
P. A. Regalia and E. Kofidis,
Monotonic convergence of fixed-point algorithms for ICA, IEEE Trans. Neural Netw., 14 (2003), 943-949.
doi: 10.1109/TNN.2003.813843. |
[14] |
Q. Ni, L. Q. Qi and F. Wang,
An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Contr., 53 (2008), 1096-1107.
doi: 10.1109/TAC.2008.923679. |
[15] |
R. Schneider and A. Uschmajew,
Convergence results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality, SIAM J. Optim., 25 (2015), 622-646.
doi: 10.1137/140957822. |
[16] |
S. Łojasiewicz, Ensembles semi-analytiques, Lectures Notes, IHES Bures-sur-Yvette, (1965). Google Scholar |
[17] |
T. G. Kolda and J. R. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.
doi: 10.1137/100801482. |
[18] |
Y. J. Wang, L. Q. Qi and X. Z. Zhang,
A practical method for computing the largest $m$-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.
doi: 10.1002/nla.633. |
[19] |
Y. Y. Xu and W. T. Yin,
A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, SIAM J. Imaging Sci., 6 (2013), 1758-1789.
doi: 10.1137/120887795. |
show all references
References:
[1] |
A. Uschmajew,
A new convergence proof for the higher-order power method and generalizations, Pac. J. Optim., 11 (2015), 309-321.
|
[2] |
A. T. Erdogan,
On the convergence of ICA algorithms with symmetric orthogonalization, IEEE Trans. Signal Process., 57 (2009), 2209-2221.
doi: 10.1109/TSP.2009.2015114. |
[3] |
D. Cartwright and B. Sturmfels,
The number of eigenvalues of a tensor, Linear Alg. Appl., 438 (2013), 942-952.
doi: 10.1016/j.laa.2011.05.040. |
[4] |
E. Kofidis and P. A. Regalia,
On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 863-884.
doi: 10.1137/S0895479801387413. |
[5] |
G. H. Golub and C. F. Van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. |
[6] |
L. De Lathauwer, B. De Moor and J. Vandewalle,
On the best rank-1 and rank-($r_1$, $r_2$, ..., $r_N$) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.
doi: 10.1137/S0895479898346995. |
[7] |
L. Lim, Singular values and eigenvalues of tensors: A variational approach, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005., IEEE, (2005), 129-132. Google Scholar |
[8] |
L. Q. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[9] |
L. Q. Qi and K. L. Teo,
Multivariate polynomial minimization and its application in signal processing, J. Glob. Optim., 26 (2013), 419-433.
doi: 10.1023/A:1024778309049. |
[10] |
L. Q. Qi, W. Y. Sun and Y. J. Wang,
Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526.
doi: 10.1007/s11464-007-0031-4. |
[11] |
M. Ng, L. Q. Qi and G. L. Zhou,
Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.
doi: 10.1137/09074838X. |
[12] |
P.-A. Absil, R. Manhony and B. Andrews,
Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547.
doi: 10.1137/040605266. |
[13] |
P. A. Regalia and E. Kofidis,
Monotonic convergence of fixed-point algorithms for ICA, IEEE Trans. Neural Netw., 14 (2003), 943-949.
doi: 10.1109/TNN.2003.813843. |
[14] |
Q. Ni, L. Q. Qi and F. Wang,
An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Contr., 53 (2008), 1096-1107.
doi: 10.1109/TAC.2008.923679. |
[15] |
R. Schneider and A. Uschmajew,
Convergence results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality, SIAM J. Optim., 25 (2015), 622-646.
doi: 10.1137/140957822. |
[16] |
S. Łojasiewicz, Ensembles semi-analytiques, Lectures Notes, IHES Bures-sur-Yvette, (1965). Google Scholar |
[17] |
T. G. Kolda and J. R. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.
doi: 10.1137/100801482. |
[18] |
Y. J. Wang, L. Q. Qi and X. Z. Zhang,
A practical method for computing the largest $m$-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.
doi: 10.1002/nla.633. |
[19] |
Y. Y. Xu and W. T. Yin,
A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, SIAM J. Imaging Sci., 6 (2013), 1758-1789.
doi: 10.1137/120887795. |
[1] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[2] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[3] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[4] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[5] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[6] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[7] |
Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020135 |
[8] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[9] |
Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397 |
[10] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[11] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[12] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[13] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[14] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[15] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[16] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[17] |
Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327 |
[18] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[19] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[20] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]