
-
Previous Article
Angel capitalists exit decisions under information asymmetry: IPO or acquisitions
- JIMO Home
- This Issue
-
Next Article
Optimal investment for an insurer under liquid reserves
The point-wise convergence of shifted symmetric higher order power method
1. | School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China |
2. | School of Mathematics and Statistics, Kashi University, Kashi 844006, China |
Shifted symmetric higher-order power method (SS-HOPM) is an effective method of computing tensor eigenpairs. However the point-wise convergence of SS-HOPM has not been proven yet. In this paper, we provide a solid proof of the point-wise convergence of SS-HOPM via Łojasiewicz inequality. In particular, we establish a mapping from the sequence generated by the algorithm to a specially defined sequence. Using Łojasiewicz inequality, we prove the convergence of the new sequence, then the original sequence is convergent based on the relation of two sequences.
References:
[1] |
A. Uschmajew,
A new convergence proof for the higher-order power method and generalizations, Pac. J. Optim., 11 (2015), 309-321.
|
[2] |
A. T. Erdogan,
On the convergence of ICA algorithms with symmetric orthogonalization, IEEE Trans. Signal Process., 57 (2009), 2209-2221.
doi: 10.1109/TSP.2009.2015114. |
[3] |
D. Cartwright and B. Sturmfels,
The number of eigenvalues of a tensor, Linear Alg. Appl., 438 (2013), 942-952.
doi: 10.1016/j.laa.2011.05.040. |
[4] |
E. Kofidis and P. A. Regalia,
On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 863-884.
doi: 10.1137/S0895479801387413. |
[5] |
G. H. Golub and C. F. Van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. |
[6] |
L. De Lathauwer, B. De Moor and J. Vandewalle,
On the best rank-1 and rank-($r_1$, $r_2$, ..., $r_N$) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.
doi: 10.1137/S0895479898346995. |
[7] |
L. Lim, Singular values and eigenvalues of tensors: A variational approach, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005., IEEE, (2005), 129-132. |
[8] |
L. Q. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[9] |
L. Q. Qi and K. L. Teo,
Multivariate polynomial minimization and its application in signal processing, J. Glob. Optim., 26 (2013), 419-433.
doi: 10.1023/A:1024778309049. |
[10] |
L. Q. Qi, W. Y. Sun and Y. J. Wang,
Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526.
doi: 10.1007/s11464-007-0031-4. |
[11] |
M. Ng, L. Q. Qi and G. L. Zhou,
Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.
doi: 10.1137/09074838X. |
[12] |
P.-A. Absil, R. Manhony and B. Andrews,
Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547.
doi: 10.1137/040605266. |
[13] |
P. A. Regalia and E. Kofidis,
Monotonic convergence of fixed-point algorithms for ICA, IEEE Trans. Neural Netw., 14 (2003), 943-949.
doi: 10.1109/TNN.2003.813843. |
[14] |
Q. Ni, L. Q. Qi and F. Wang,
An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Contr., 53 (2008), 1096-1107.
doi: 10.1109/TAC.2008.923679. |
[15] |
R. Schneider and A. Uschmajew,
Convergence results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality, SIAM J. Optim., 25 (2015), 622-646.
doi: 10.1137/140957822. |
[16] |
S. Łojasiewicz, Ensembles semi-analytiques, Lectures Notes, IHES Bures-sur-Yvette, (1965). |
[17] |
T. G. Kolda and J. R. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.
doi: 10.1137/100801482. |
[18] |
Y. J. Wang, L. Q. Qi and X. Z. Zhang,
A practical method for computing the largest $m$-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.
doi: 10.1002/nla.633. |
[19] |
Y. Y. Xu and W. T. Yin,
A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, SIAM J. Imaging Sci., 6 (2013), 1758-1789.
doi: 10.1137/120887795. |
show all references
References:
[1] |
A. Uschmajew,
A new convergence proof for the higher-order power method and generalizations, Pac. J. Optim., 11 (2015), 309-321.
|
[2] |
A. T. Erdogan,
On the convergence of ICA algorithms with symmetric orthogonalization, IEEE Trans. Signal Process., 57 (2009), 2209-2221.
doi: 10.1109/TSP.2009.2015114. |
[3] |
D. Cartwright and B. Sturmfels,
The number of eigenvalues of a tensor, Linear Alg. Appl., 438 (2013), 942-952.
doi: 10.1016/j.laa.2011.05.040. |
[4] |
E. Kofidis and P. A. Regalia,
On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 863-884.
doi: 10.1137/S0895479801387413. |
[5] |
G. H. Golub and C. F. Van Loan, Matrix Computations, Fourth edition, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 2013. |
[6] |
L. De Lathauwer, B. De Moor and J. Vandewalle,
On the best rank-1 and rank-($r_1$, $r_2$, ..., $r_N$) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 21 (2000), 1324-1342.
doi: 10.1137/S0895479898346995. |
[7] |
L. Lim, Singular values and eigenvalues of tensors: A variational approach, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005., IEEE, (2005), 129-132. |
[8] |
L. Q. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[9] |
L. Q. Qi and K. L. Teo,
Multivariate polynomial minimization and its application in signal processing, J. Glob. Optim., 26 (2013), 419-433.
doi: 10.1023/A:1024778309049. |
[10] |
L. Q. Qi, W. Y. Sun and Y. J. Wang,
Numerical multilinear algebra and its applications, Front. Math. China, 2 (2007), 501-526.
doi: 10.1007/s11464-007-0031-4. |
[11] |
M. Ng, L. Q. Qi and G. L. Zhou,
Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.
doi: 10.1137/09074838X. |
[12] |
P.-A. Absil, R. Manhony and B. Andrews,
Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547.
doi: 10.1137/040605266. |
[13] |
P. A. Regalia and E. Kofidis,
Monotonic convergence of fixed-point algorithms for ICA, IEEE Trans. Neural Netw., 14 (2003), 943-949.
doi: 10.1109/TNN.2003.813843. |
[14] |
Q. Ni, L. Q. Qi and F. Wang,
An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Contr., 53 (2008), 1096-1107.
doi: 10.1109/TAC.2008.923679. |
[15] |
R. Schneider and A. Uschmajew,
Convergence results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality, SIAM J. Optim., 25 (2015), 622-646.
doi: 10.1137/140957822. |
[16] |
S. Łojasiewicz, Ensembles semi-analytiques, Lectures Notes, IHES Bures-sur-Yvette, (1965). |
[17] |
T. G. Kolda and J. R. Mayo,
Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.
doi: 10.1137/100801482. |
[18] |
Y. J. Wang, L. Q. Qi and X. Z. Zhang,
A practical method for computing the largest $m$-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.
doi: 10.1002/nla.633. |
[19] |
Y. Y. Xu and W. T. Yin,
A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, SIAM J. Imaging Sci., 6 (2013), 1758-1789.
doi: 10.1137/120887795. |
[1] |
Gang Wang, Guanglu Zhou, Louis Caccetta. Z-Eigenvalue Inclusion Theorems for Tensors. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 187-198. doi: 10.3934/dcdsb.2017009 |
[2] |
Jun He, Guangjun Xu, Yanmin Liu. New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2095-2108. doi: 10.3934/jimo.2021058 |
[3] |
Xinmin Yang, Xiaoqi Yang, Kok Lay Teo. Higher-order symmetric duality in multiobjective programming with invexity. Journal of Industrial and Management Optimization, 2008, 4 (2) : 385-391. doi: 10.3934/jimo.2008.4.385 |
[4] |
Liping Tang, Xinmin Yang, Ying Gao. Higher-order symmetric duality for multiobjective programming with cone constraints. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1873-1884. doi: 10.3934/jimo.2019033 |
[5] |
Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183 |
[6] |
Yongqin Liu. The point-wise estimates of solutions for semi-linear dissipative wave equation. Communications on Pure and Applied Analysis, 2013, 12 (1) : 237-252. doi: 10.3934/cpaa.2013.12.237 |
[7] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[8] |
Petteri Harjulehto, Peter Hästö, Juha Tiirola. Point-wise behavior of the Geman--McClure and the Hebert--Leahy image restoration models. Inverse Problems and Imaging, 2015, 9 (3) : 835-851. doi: 10.3934/ipi.2015.9.835 |
[9] |
Jiao Chen, Weike Wang. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space. Communications on Pure and Applied Analysis, 2014, 13 (1) : 307-330. doi: 10.3934/cpaa.2014.13.307 |
[10] |
Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387 |
[11] |
Xiaojun Zheng, Zhongdan Huan, Jun Liu. On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022068 |
[12] |
Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014 |
[13] |
Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81 |
[14] |
Alain Haraux. Some applications of the Łojasiewicz gradient inequality. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2417-2427. doi: 10.3934/cpaa.2012.11.2417 |
[15] |
Kongzhi Li, Xiaoping Xue. The Łojasiewicz inequality for free energy functionals on a graph. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022066 |
[16] |
Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990 |
[17] |
Pedro D. Prieto-Martínez, Narciso Román-Roy. Higher-order mechanics: Variational principles and other topics. Journal of Geometric Mechanics, 2013, 5 (4) : 493-510. doi: 10.3934/jgm.2013.5.493 |
[18] |
George J. Bautista, Ademir F. Pazoto. Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain. Communications on Pure and Applied Analysis, 2020, 19 (2) : 747-769. doi: 10.3934/cpaa.2020035 |
[19] |
Feliz Minhós, Hugo Carrasco. Solvability of higher-order BVPs in the half-line with unbounded nonlinearities. Conference Publications, 2015, 2015 (special) : 841-850. doi: 10.3934/proc.2015.0841 |
[20] |
Clesh Deseskel Elion Ekohela, Daniel Moukoko. On higher-order anisotropic perturbed Caginalp phase field systems. Electronic Research Announcements, 2019, 26: 36-53. doi: 10.3934/era.2019.26.004 |
2020 Impact Factor: 1.801
Tools
Article outline
Figures and Tables
[Back to Top]