doi: 10.3934/jimo.2019117

Multi-period hazardous waste collection planning with consideration of risk stability

School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China

* Corresponding author: Xiang Li

Received  January 2019 Revised  March 2019 Published  September 2019

Hazardous wastes are likely to cause danger to humans and the environment. In this paper, a new mathematical optimization model is developed for the multi-period hazardous waste collection planning problem. The hazardous wastes generated by each source are time-varying in weight and allow incomplete and delayed collection. The aim of the model is to help decision makers determine the weight of hazardous wastes to collect from each source and the transportation routes of vehicles in each period. In the developed model, three objectives are considered simultaneously: (1) minimisation of total cost over all periods, which includes start-up fee of vehicles, transportation cost of hazardous wastes, and penalty fee for the delayed collection; (2) minimisation of total transportation risk posing to the surrounding of routes over all periods; and (3) even distribution of transportation risk among all periods, also called risk stability. The developed multi-objective model is transformed into a single-objective one based on the weighted sums method, which is finally equated to a mixed 0-1 linear programming by introducing a set of auxiliary variables and constraints. Numerical experiments are computed with CPLEX software to find the optimal solutions. The computational results and parameters analysis demonstrate the applicability and validity of the developed model. It is found that the consideration of the risk stability can reduce the total transportation risk, the uneven distribution of the transportation risk among all periods, and the maximum number of vehicles used, though increasing the total cost to some extent.

Citation: Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019117
References:
[1]

F. Samanlioglu, A multi-objective mathematical model for the industrial hazardous waste location-routing problem, European Journal of Operational Research, 226 (2013), 332-340.  doi: 10.1016/j.ejor.2012.11.019.  Google Scholar

[2]

N. MuseeL. Lorenzen and C. Aldrich, An aggregate fuzzy hazardous index for composite wastes, Journal of Hazardous Materials, 137 (2006), 723-733.  doi: 10.1016/j.jhazmat.2006.03.060.  Google Scholar

[3]

D. E. Shobrys, A Model for the Selection of Shipping Routes and Storage Locations for a Hazardous Substance, Ph. D thesis, Johns Hopkins University, 1981. Google Scholar

[4]

G. List and P. Mirchandani, An integrated network/planar multiobjective model for routing and siting for hazardous materials and wastes, Transportation Science, 25 (1991), 99-174.  doi: 10.1287/trsc.25.2.146.  Google Scholar

[5]

R. R. LiY. LeungB. Huang and H. Lin, A genetic algorithm for multiobjective dangerous goods route planning, International Journal of Geographical Information Science, 27 (2013), 1073-1089.  doi: 10.1080/13658816.2012.737921.  Google Scholar

[6]

Y. Y. KangR. Batta and C. Y. Kwon, Generalized route planning model for hazardous material transportation with VaR and equity considerations, Computers & Operations Research, 43 (2014), 237-247.  doi: 10.1016/j.cor.2013.09.015.  Google Scholar

[7]

K. N. Androutsopoulos and K. G. Zografos, Solving the bicriterion routing and scheduling problem for hazardous materials distribution, Transportation Research Part C: Emerging Technologies, 18 (2010), 713-726.  doi: 10.1016/j.trc.2009.12.002.  Google Scholar

[8]

T. J. FanW. C. Chiang and R. Russell, Modeling urban hazmat transportation with road closure consideration, Transportation Research Part D: Transport and Environment, 35 (2015), 104-115.  doi: 10.1016/j.trd.2014.11.009.  Google Scholar

[9]

G. AssadipourG. Y. Ke and M. Verma, Planning and managing intermodal transportation of hazardous materials with capacity selection and congestion, Transportation Research Part E: Logistics and Transportation Review, 76 (2015), 45-57.  doi: 10.1016/j.tre.2015.02.003.  Google Scholar

[10]

S. W. Chiou, A traffic-responsive signal control to enhance road network resilience with hazmat transportation in multiple periods, Reliability Engineering & System Safety, 175 (2018), 105-118.  doi: 10.1016/j.ress.2018.03.016.  Google Scholar

[11]

R. TunalıoğluÇ. Koç and T. Bektaș, A multiperiod location-routing problem arising in the collection of Olive Oil Mill Wastewater, Journal of the Operational Research Society, 67 (2016), 1012-1024.   Google Scholar

[12]

M. RabbaniR. Heidari and R. Yazdanparast, A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-Ⅱ and Monte Carlo simulation, European Journal of Operational Research, 272 (2019), 945-961.  doi: 10.1016/j.ejor.2018.07.024.  Google Scholar

[13]

L. BiancoM. Caramia and S. Giordani, A bilevel flow model for hazmat transportation network design, Transportation Research Part C: Emerging Technologies, 17 (2009), 175-196.  doi: 10.1016/j.trc.2008.10.001.  Google Scholar

[14]

M. TaslimiR. Batta and C. Kwon, A comprehensive modeling framework for hazmat network design, hazmat response team location, and equity of risk, Computers & Operations Research, 79 (2017), 119-130.  doi: 10.1016/j.cor.2016.10.005.  Google Scholar

[15]

H. Jin and R. Batta, Objectives derived from viewing hazmat shipments as a sequence of independent Bernoulli trials, Transportation Science, 31 (1997), 252-261.   Google Scholar

[16]

R. PradhanangaE. Taniguchi and T. Yamada, Ant colony system based routing and scheduling for hazardous material transportation, Procedia-Social and Behavioral Sciences, 2 (2010), 6097-6108.  doi: 10.1016/j.sbspro.2010.04.022.  Google Scholar

[17]

R. PradhanangaE. TaniguchiT. Yamada and A. G. Qureshi, Bi-objective decision support system for routing and scheduling of hazardous materials, Socio-Economic Planning Sciences, 48 (2014), 135-148.  doi: 10.1016/j.seps.2014.02.003.  Google Scholar

[18]

J. Current and S. Ratick, A model to assess risk, equity and efficiency in facility location and transportation of hazardous materials, Location Science, 3 (1995), 187-201.  doi: 10.1016/0966-8349(95)00013-5.  Google Scholar

[19]

J. J. WuM. H. LiuH. J. SunT. F. LiZ. Y. Gao and D. Z. W. Wang, Equity-based timetable synchronization optimization in urban subway network, Transportation Research Part C: Emerging Technologies, 51 (2015), 1-18.  doi: 10.1016/j.trc.2014.11.001.  Google Scholar

[20]

E. ArdjmandG. WeckmanN. ParkP. Taherkhani and M. Singh, Applying genetic algorithm to a new location and routing model of hazardous materials, International Journal of Production Research, 53 (2015), 916-928.   Google Scholar

show all references

References:
[1]

F. Samanlioglu, A multi-objective mathematical model for the industrial hazardous waste location-routing problem, European Journal of Operational Research, 226 (2013), 332-340.  doi: 10.1016/j.ejor.2012.11.019.  Google Scholar

[2]

N. MuseeL. Lorenzen and C. Aldrich, An aggregate fuzzy hazardous index for composite wastes, Journal of Hazardous Materials, 137 (2006), 723-733.  doi: 10.1016/j.jhazmat.2006.03.060.  Google Scholar

[3]

D. E. Shobrys, A Model for the Selection of Shipping Routes and Storage Locations for a Hazardous Substance, Ph. D thesis, Johns Hopkins University, 1981. Google Scholar

[4]

G. List and P. Mirchandani, An integrated network/planar multiobjective model for routing and siting for hazardous materials and wastes, Transportation Science, 25 (1991), 99-174.  doi: 10.1287/trsc.25.2.146.  Google Scholar

[5]

R. R. LiY. LeungB. Huang and H. Lin, A genetic algorithm for multiobjective dangerous goods route planning, International Journal of Geographical Information Science, 27 (2013), 1073-1089.  doi: 10.1080/13658816.2012.737921.  Google Scholar

[6]

Y. Y. KangR. Batta and C. Y. Kwon, Generalized route planning model for hazardous material transportation with VaR and equity considerations, Computers & Operations Research, 43 (2014), 237-247.  doi: 10.1016/j.cor.2013.09.015.  Google Scholar

[7]

K. N. Androutsopoulos and K. G. Zografos, Solving the bicriterion routing and scheduling problem for hazardous materials distribution, Transportation Research Part C: Emerging Technologies, 18 (2010), 713-726.  doi: 10.1016/j.trc.2009.12.002.  Google Scholar

[8]

T. J. FanW. C. Chiang and R. Russell, Modeling urban hazmat transportation with road closure consideration, Transportation Research Part D: Transport and Environment, 35 (2015), 104-115.  doi: 10.1016/j.trd.2014.11.009.  Google Scholar

[9]

G. AssadipourG. Y. Ke and M. Verma, Planning and managing intermodal transportation of hazardous materials with capacity selection and congestion, Transportation Research Part E: Logistics and Transportation Review, 76 (2015), 45-57.  doi: 10.1016/j.tre.2015.02.003.  Google Scholar

[10]

S. W. Chiou, A traffic-responsive signal control to enhance road network resilience with hazmat transportation in multiple periods, Reliability Engineering & System Safety, 175 (2018), 105-118.  doi: 10.1016/j.ress.2018.03.016.  Google Scholar

[11]

R. TunalıoğluÇ. Koç and T. Bektaș, A multiperiod location-routing problem arising in the collection of Olive Oil Mill Wastewater, Journal of the Operational Research Society, 67 (2016), 1012-1024.   Google Scholar

[12]

M. RabbaniR. Heidari and R. Yazdanparast, A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-Ⅱ and Monte Carlo simulation, European Journal of Operational Research, 272 (2019), 945-961.  doi: 10.1016/j.ejor.2018.07.024.  Google Scholar

[13]

L. BiancoM. Caramia and S. Giordani, A bilevel flow model for hazmat transportation network design, Transportation Research Part C: Emerging Technologies, 17 (2009), 175-196.  doi: 10.1016/j.trc.2008.10.001.  Google Scholar

[14]

M. TaslimiR. Batta and C. Kwon, A comprehensive modeling framework for hazmat network design, hazmat response team location, and equity of risk, Computers & Operations Research, 79 (2017), 119-130.  doi: 10.1016/j.cor.2016.10.005.  Google Scholar

[15]

H. Jin and R. Batta, Objectives derived from viewing hazmat shipments as a sequence of independent Bernoulli trials, Transportation Science, 31 (1997), 252-261.   Google Scholar

[16]

R. PradhanangaE. Taniguchi and T. Yamada, Ant colony system based routing and scheduling for hazardous material transportation, Procedia-Social and Behavioral Sciences, 2 (2010), 6097-6108.  doi: 10.1016/j.sbspro.2010.04.022.  Google Scholar

[17]

R. PradhanangaE. TaniguchiT. Yamada and A. G. Qureshi, Bi-objective decision support system for routing and scheduling of hazardous materials, Socio-Economic Planning Sciences, 48 (2014), 135-148.  doi: 10.1016/j.seps.2014.02.003.  Google Scholar

[18]

J. Current and S. Ratick, A model to assess risk, equity and efficiency in facility location and transportation of hazardous materials, Location Science, 3 (1995), 187-201.  doi: 10.1016/0966-8349(95)00013-5.  Google Scholar

[19]

J. J. WuM. H. LiuH. J. SunT. F. LiZ. Y. Gao and D. Z. W. Wang, Equity-based timetable synchronization optimization in urban subway network, Transportation Research Part C: Emerging Technologies, 51 (2015), 1-18.  doi: 10.1016/j.trc.2014.11.001.  Google Scholar

[20]

E. ArdjmandG. WeckmanN. ParkP. Taherkhani and M. Singh, Applying genetic algorithm to a new location and routing model of hazardous materials, International Journal of Production Research, 53 (2015), 916-928.   Google Scholar

Figure 1.  The results of period 1
Figure 2.  The influence of $ \lambda_3 $
Figure 3.  The influence of $ W $
Table 1.  The weight of hazardous wastes generated by each factory in each period (Tons)
PeriodFactory
1234567
128192124322022
219272316251114
312201510141317
PeriodFactory
1234567
128192124322022
219272316251114
312201510141317
Table 2.  The transportation cost ($/Ton) and the number of population exposed (Pop/Ton) of transporting a unit weight of hazardous wastes from one node to another
Node01234567
00/08/710/1011/36/1111/138/410/14
10/017/917/67/814/113/1111/17
20/02/716/29/416/1212/10
30/017/87/1115/610/13
40/017/39/1315/12
50/011/164/12
60/08/13
70/0
Node01234567
00/08/710/1011/36/1111/138/410/14
10/017/917/67/814/113/1111/17
20/02/716/29/416/1212/10
30/017/87/1115/610/13
40/017/39/1315/12
50/011/164/12
60/08/13
70/0
Table 3.  The computational results
$ \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 0 $$ \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 5 $
Period 1Period 2Period 3Period 1Period 2Period 3
No. of vehicles644555
Transportation cost($)6373527847045399.85134.75445
Penalty fee($)0001415.712500
Transportation risk (Pop)2442227917261971.71971.71955
Total cost($)1635518645.2
Total transportation risk (Pop)64475898.4
$ \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 0 $$ \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 5 $
Period 1Period 2Period 3Period 1Period 2Period 3
No. of vehicles644555
Transportation cost($)6373527847045399.85134.75445
Penalty fee($)0001415.712500
Transportation risk (Pop)2442227917261971.71971.71955
Total cost($)1635518645.2
Total transportation risk (Pop)64475898.4
[1]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[2]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[3]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[6]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[7]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[8]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[9]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[12]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[13]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[16]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[17]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[18]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[19]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[20]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (95)
  • HTML views (459)
  • Cited by (0)

Other articles
by authors

[Back to Top]