• Previous Article
    Back-ordered inventory model with inflation in a cloudy-fuzzy environment
  • JIMO Home
  • This Issue
  • Next Article
    Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem
doi: 10.3934/jimo.2019120

Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer

1. 

College of Missile Engineering, Rocket Force University of Engineering, Xi'an Shaanxi 710025, China

2. 

School of Astronautics, Northwestern Polytechnical University, Xi'an Shaanxi 710072, China

* Corresponding author: Guangbin CAI

Received  March 2019 Revised  April 2019 Published  September 2019

Fund Project: This work was supported in part by the National Natural Science Foundation of China under grant number 61773387, and by China Postdoctoral Fund under grant numbers 2017T100770 and 2016M590971.

Considering the parameter uncertainty and actuator failure of hypersonic vehicle during maneuvering, this paper proposes a state observer-based hypersonic vehicle fault-tolerant control (FTC) system design method. Because hypersonic vehicles are prone to failure during maneuvering, the state quantity cannot be measured. First, a state observer-based FTC control method is designed for the linear parameter-varying (LPV) model with parameter uncertainty and partial failure of the actuator. Then, the Lyapunov function is used to demonstrate the asymptotic stability of the closed-loop system. The performance index function proved that the system has robust stability under the disturbance condition. Subsequently, the linear matrix inequality (LMI) was used to solve the observer parameters and the corresponding gain matrix in the control system. The simulation results indicated that the designed controller can track the flight command signal stably and has strong robustness, which verified the effectiveness of the design controller.

Citation: Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019120
References:
[1]

C. F. ZhangQ. Zong and Q. Dong, A survey of models and control problems of hypersonic vehicles, Information and Control, 46 (2017), 90-102.   Google Scholar

[2]

H. X. ZhangZ. F. GongG. B. Cai and R. Song, Reentry tracking control of hypersonic vehicle with complicated constraints, Journal of Ordnance Equipment Engineering, 40 (2019), 1-6.   Google Scholar

[3]

L. HuangZ. S. Duan and J. Y. Yang, Challenges of control science in near space hypersonic aircrafts, Control Theory and Applications, 28 (2011), 1496-1505.   Google Scholar

[4]

C. Y. SunC. X. Mu and Y. Yu, Some control problems for near space hypersonic vehicles, Acta Automatica Sinica, 39 (2013), 1901-1913.  doi: 10.3724/SP.J.1004.2013.01901.  Google Scholar

[5]

Y. WangY. Zhang and C. Bai, Review of guidance and control approaches for air-breathing hypersonic vehicle, Journal of Ordnance Equipment Engineering, 38 (2017), 72-76.   Google Scholar

[6]

B. Fidan, M. Mirmirani and P. Ioannou, Flight dynamics and control of air-breathing hypersonic vehicles: Review and new directions, 12th AIAA International Space Planes and Hypersonic Systems and technologies, (2003). doi: 10.2514/6.2003-7081.  Google Scholar

[7]

J. J. HeR. Y. Qi and B. Jiang, Adaptive output feedback fault-tolerant control design for hypersonic flight vehicles, Journal of the Franklin Institute, 352 (2015), 1811-1835.  doi: 10.1016/j.jfranklin.2015.01.016.  Google Scholar

[8]

Q. C. YangQ. Zong and Q. Dong, Reentry control and performance evaluation method for hypersonic vehicle, Information and Control, 46 (2017), 33-40.   Google Scholar

[9]

X. GuanJ. Zhao and Y. He, Track technology of hypersonic aircraft in near space, Journal of Ordnance Equipment Engineering, 32 (2011), 4-6.   Google Scholar

[10]

H. B. SunS. H. Li and C. Y. Sun, Robust adaptive integral-sliding-mode fault-tolerant control for air-breathing hypersonic vehicles, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 226 (2012), 1344-1355.   Google Scholar

[11]

Z. F. GaoT. Cao and J. X. Lin, Sliding mode fault tolerant tracking control for a flexible hypersonic vehicle with actuator faults, ICIC Express Letters Part B, Appli-Cations: An International Journal of Research and Surveys, 6 (2015), 1797-1804.   Google Scholar

[12]

J. G. SunS. M. Song and G. Q. Wu, Fault-tolerant track control of hypersonic vehicle based on fast terminal sliding mode, Journal of Spacecraft and Rockets, 54 (2017), 1304-1316.  doi: 10.2514/1.A33890.  Google Scholar

[13]

R. Y. QiY. H. Huang and B. Jiang, Adaptive backstepping control for a hypersonic vehicle with uncertain parameters and actuator faults, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 227 (2013), 51-61.  doi: 10.1177/0959651812450134.  Google Scholar

[14]

Y. F. Xu, B. Jiang and Z. F. Gao, Fault tolerant tracking control for near space hypersonic vehicle via neural network, 3rd Systems and Control in Aeronautics and Astronautics (ISSCAA) International Symposium, (2010), 637–642. doi: 10.1109/ISSCAA.2010.5633189.  Google Scholar

[15]

C. PengX. M. Wang and R. Xie, Fault-tolerant control for hypersonic vehicle with system uncertainty, Journal of Beijing University of Aeronautics and Astronautics, 42 (2016), 1414-1421.   Google Scholar

[16]

Z. F. GaoJ. X. Lin and T. Cao, Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault, International Journal of Control Automation and Systems, 13 (2015), 672-679.  doi: 10.1007/s12555-014-0169-2.  Google Scholar

[17]

J. T. ParkerA. SerraniY. StephenA. B. Michael and B. D. David, Control-oriented modeling of an air-breathing hypersonic vehicle, Journal of Guidance Control and Dynamics, 30 (2007), 856-869.  doi: 10.2514/1.27830.  Google Scholar

[18]

D. O. Sigthorsson, Control-Oriented Modeling and Output Feedback Control of Hypersonic Air-Breathing Vehicles, Ph.D thesis, The Ohio State University, 2008. Google Scholar

[19]

A. Marcos and S. Bennani, LPV modeling, analysis and design in space systems: Rationale, objectives and limitations, AIAA Guidance, Navigation, and Control Conference, (2009). doi: 10.2514/6.2009-5633.  Google Scholar

[20]

G. B. CaiG. R. Duan and C. H. Hu, A velocity-based LPV modeling and control framework for an airbreathing hypersonic vehicle, International Journal of Innovative Computing Information and Control, 7 (2011), 2269-2281.   Google Scholar

[21]

Z. D. WangG. L. Wei and G. Feng, Reliable control for discrete-time piecewise linear systems with infinite distributed delays, Automatica J. IFAC, 45 (2009), 2991-2994.  doi: 10.1016/j.automatica.2009.09.012.  Google Scholar

[22]

Z. F. GaoB. JiangP. ShiJ. Y. Liu and Y. F. Xu, Passive fault-tolerant control design for near-space hypersonic vehicle dynamical system, Circuits, Systems, and Signal Processing, 31 (2012), 565-581.  doi: 10.1007/s00034-011-9385-7.  Google Scholar

[23]

S. Gao and J. S. Mei, Fault tolerant control of actuator faults for input nonlinear systems, Information and Control, 44 (2015), 463-468.   Google Scholar

[24]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to $H_\infty$ control, International Journal of Robust and Nonlinear Control, 4 (1994), 421-448.  doi: 10.1002/rnc.4590040403.  Google Scholar

[25]

M. Corless and J. Tu, State and input estimation for a class of uncertain systems, Automatica J. IFAC, 34 (1998), 757-764.  doi: 10.1016/S0005-1098(98)00013-2.  Google Scholar

[26]

F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. J. Yu and L. Jennings, Visual MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.  Google Scholar

[27]

B. LiX. QianJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[28]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, Journal of Industrial and Management Optimization, 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.  Google Scholar

[29]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in non-regenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.   Google Scholar

[30]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400.   Google Scholar

show all references

References:
[1]

C. F. ZhangQ. Zong and Q. Dong, A survey of models and control problems of hypersonic vehicles, Information and Control, 46 (2017), 90-102.   Google Scholar

[2]

H. X. ZhangZ. F. GongG. B. Cai and R. Song, Reentry tracking control of hypersonic vehicle with complicated constraints, Journal of Ordnance Equipment Engineering, 40 (2019), 1-6.   Google Scholar

[3]

L. HuangZ. S. Duan and J. Y. Yang, Challenges of control science in near space hypersonic aircrafts, Control Theory and Applications, 28 (2011), 1496-1505.   Google Scholar

[4]

C. Y. SunC. X. Mu and Y. Yu, Some control problems for near space hypersonic vehicles, Acta Automatica Sinica, 39 (2013), 1901-1913.  doi: 10.3724/SP.J.1004.2013.01901.  Google Scholar

[5]

Y. WangY. Zhang and C. Bai, Review of guidance and control approaches for air-breathing hypersonic vehicle, Journal of Ordnance Equipment Engineering, 38 (2017), 72-76.   Google Scholar

[6]

B. Fidan, M. Mirmirani and P. Ioannou, Flight dynamics and control of air-breathing hypersonic vehicles: Review and new directions, 12th AIAA International Space Planes and Hypersonic Systems and technologies, (2003). doi: 10.2514/6.2003-7081.  Google Scholar

[7]

J. J. HeR. Y. Qi and B. Jiang, Adaptive output feedback fault-tolerant control design for hypersonic flight vehicles, Journal of the Franklin Institute, 352 (2015), 1811-1835.  doi: 10.1016/j.jfranklin.2015.01.016.  Google Scholar

[8]

Q. C. YangQ. Zong and Q. Dong, Reentry control and performance evaluation method for hypersonic vehicle, Information and Control, 46 (2017), 33-40.   Google Scholar

[9]

X. GuanJ. Zhao and Y. He, Track technology of hypersonic aircraft in near space, Journal of Ordnance Equipment Engineering, 32 (2011), 4-6.   Google Scholar

[10]

H. B. SunS. H. Li and C. Y. Sun, Robust adaptive integral-sliding-mode fault-tolerant control for air-breathing hypersonic vehicles, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 226 (2012), 1344-1355.   Google Scholar

[11]

Z. F. GaoT. Cao and J. X. Lin, Sliding mode fault tolerant tracking control for a flexible hypersonic vehicle with actuator faults, ICIC Express Letters Part B, Appli-Cations: An International Journal of Research and Surveys, 6 (2015), 1797-1804.   Google Scholar

[12]

J. G. SunS. M. Song and G. Q. Wu, Fault-tolerant track control of hypersonic vehicle based on fast terminal sliding mode, Journal of Spacecraft and Rockets, 54 (2017), 1304-1316.  doi: 10.2514/1.A33890.  Google Scholar

[13]

R. Y. QiY. H. Huang and B. Jiang, Adaptive backstepping control for a hypersonic vehicle with uncertain parameters and actuator faults, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 227 (2013), 51-61.  doi: 10.1177/0959651812450134.  Google Scholar

[14]

Y. F. Xu, B. Jiang and Z. F. Gao, Fault tolerant tracking control for near space hypersonic vehicle via neural network, 3rd Systems and Control in Aeronautics and Astronautics (ISSCAA) International Symposium, (2010), 637–642. doi: 10.1109/ISSCAA.2010.5633189.  Google Scholar

[15]

C. PengX. M. Wang and R. Xie, Fault-tolerant control for hypersonic vehicle with system uncertainty, Journal of Beijing University of Aeronautics and Astronautics, 42 (2016), 1414-1421.   Google Scholar

[16]

Z. F. GaoJ. X. Lin and T. Cao, Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault, International Journal of Control Automation and Systems, 13 (2015), 672-679.  doi: 10.1007/s12555-014-0169-2.  Google Scholar

[17]

J. T. ParkerA. SerraniY. StephenA. B. Michael and B. D. David, Control-oriented modeling of an air-breathing hypersonic vehicle, Journal of Guidance Control and Dynamics, 30 (2007), 856-869.  doi: 10.2514/1.27830.  Google Scholar

[18]

D. O. Sigthorsson, Control-Oriented Modeling and Output Feedback Control of Hypersonic Air-Breathing Vehicles, Ph.D thesis, The Ohio State University, 2008. Google Scholar

[19]

A. Marcos and S. Bennani, LPV modeling, analysis and design in space systems: Rationale, objectives and limitations, AIAA Guidance, Navigation, and Control Conference, (2009). doi: 10.2514/6.2009-5633.  Google Scholar

[20]

G. B. CaiG. R. Duan and C. H. Hu, A velocity-based LPV modeling and control framework for an airbreathing hypersonic vehicle, International Journal of Innovative Computing Information and Control, 7 (2011), 2269-2281.   Google Scholar

[21]

Z. D. WangG. L. Wei and G. Feng, Reliable control for discrete-time piecewise linear systems with infinite distributed delays, Automatica J. IFAC, 45 (2009), 2991-2994.  doi: 10.1016/j.automatica.2009.09.012.  Google Scholar

[22]

Z. F. GaoB. JiangP. ShiJ. Y. Liu and Y. F. Xu, Passive fault-tolerant control design for near-space hypersonic vehicle dynamical system, Circuits, Systems, and Signal Processing, 31 (2012), 565-581.  doi: 10.1007/s00034-011-9385-7.  Google Scholar

[23]

S. Gao and J. S. Mei, Fault tolerant control of actuator faults for input nonlinear systems, Information and Control, 44 (2015), 463-468.   Google Scholar

[24]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to $H_\infty$ control, International Journal of Robust and Nonlinear Control, 4 (1994), 421-448.  doi: 10.1002/rnc.4590040403.  Google Scholar

[25]

M. Corless and J. Tu, State and input estimation for a class of uncertain systems, Automatica J. IFAC, 34 (1998), 757-764.  doi: 10.1016/S0005-1098(98)00013-2.  Google Scholar

[26]

F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. J. Yu and L. Jennings, Visual MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.  Google Scholar

[27]

B. LiX. QianJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[28]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, Journal of Industrial and Management Optimization, 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.  Google Scholar

[29]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in non-regenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.   Google Scholar

[30]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400.   Google Scholar

Figure 1.  Curve of flight path angle under actuator fault
Figure 2.  Structure diagram of control system
Figure 3.  Velocity curve under actuator fault
Figure 4.  Flight path angle curve under actuator fault
Figure 5.  Attack angle curve under actuator fault
Figure 6.  Altitude curve under actuator fault
Figure 7.  Velocity tracking performance
Figure 8.  Flight path angle tracking performance
Figure 9.  Attack angle tracking performance
Figure 10.  Altitude tracking performance
Figure 11.  Control surface deflection angle curve
Figure 12.  Diffuser area ratio curve
[1]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[2]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[3]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[6]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[7]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[8]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[9]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[10]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[14]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[17]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[18]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (163)
  • HTML views (442)
  • Cited by (0)

[Back to Top]