• Previous Article
    Finite horizon portfolio selection problems with stochastic borrowing constraints
  • JIMO Home
  • This Issue
  • Next Article
    Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem
doi: 10.3934/jimo.2019120

Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer

1. 

College of Missile Engineering, Rocket Force University of Engineering, Xi'an Shaanxi 710025, China

2. 

School of Astronautics, Northwestern Polytechnical University, Xi'an Shaanxi 710072, China

* Corresponding author: Guangbin CAI

Received  March 2019 Revised  April 2019 Published  September 2019

Fund Project: This work was supported in part by the National Natural Science Foundation of China under grant number 61773387, and by China Postdoctoral Fund under grant numbers 2017T100770 and 2016M590971

Considering the parameter uncertainty and actuator failure of hypersonic vehicle during maneuvering, this paper proposes a state observer-based hypersonic vehicle fault-tolerant control (FTC) system design method. Because hypersonic vehicles are prone to failure during maneuvering, the state quantity cannot be measured. First, a state observer-based FTC control method is designed for the linear parameter-varying (LPV) model with parameter uncertainty and partial failure of the actuator. Then, the Lyapunov function is used to demonstrate the asymptotic stability of the closed-loop system. The performance index function proved that the system has robust stability under the disturbance condition. Subsequently, the linear matrix inequality (LMI) was used to solve the observer parameters and the corresponding gain matrix in the control system. The simulation results indicated that the designed controller can track the flight command signal stably and has strong robustness, which verified the effectiveness of the design controller.

Citation: Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019120
References:
[1]

C. F. ZhangQ. Zong and Q. Dong, A survey of models and control problems of hypersonic vehicles, Information and Control, 46 (2017), 90-102.   Google Scholar

[2]

H. X. ZhangZ. F. GongG. B. Cai and R. Song, Reentry tracking control of hypersonic vehicle with complicated constraints, Journal of Ordnance Equipment Engineering, 40 (2019), 1-6.   Google Scholar

[3]

L. HuangZ. S. Duan and J. Y. Yang, Challenges of control science in near space hypersonic aircrafts, Control Theory and Applications, 28 (2011), 1496-1505.   Google Scholar

[4]

C. Y. SunC. X. Mu and Y. Yu, Some control problems for near space hypersonic vehicles, Acta Automatica Sinica, 39 (2013), 1901-1913.  doi: 10.3724/SP.J.1004.2013.01901.  Google Scholar

[5]

Y. WangY. Zhang and C. Bai, Review of guidance and control approaches for air-breathing hypersonic vehicle, Journal of Ordnance Equipment Engineering, 38 (2017), 72-76.   Google Scholar

[6]

B. Fidan, M. Mirmirani and P. Ioannou, Flight dynamics and control of air-breathing hypersonic vehicles: Review and new directions, 12th AIAA International Space Planes and Hypersonic Systems and technologies, (2003). doi: 10.2514/6.2003-7081.  Google Scholar

[7]

J. J. HeR. Y. Qi and B. Jiang, Adaptive output feedback fault-tolerant control design for hypersonic flight vehicles, Journal of the Franklin Institute, 352 (2015), 1811-1835.  doi: 10.1016/j.jfranklin.2015.01.016.  Google Scholar

[8]

Q. C. YangQ. Zong and Q. Dong, Reentry control and performance evaluation method for hypersonic vehicle, Information and Control, 46 (2017), 33-40.   Google Scholar

[9]

X. GuanJ. Zhao and Y. He, Track technology of hypersonic aircraft in near space, Journal of Ordnance Equipment Engineering, 32 (2011), 4-6.   Google Scholar

[10]

H. B. SunS. H. Li and C. Y. Sun, Robust adaptive integral-sliding-mode fault-tolerant control for air-breathing hypersonic vehicles, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 226 (2012), 1344-1355.   Google Scholar

[11]

Z. F. GaoT. Cao and J. X. Lin, Sliding mode fault tolerant tracking control for a flexible hypersonic vehicle with actuator faults, ICIC Express Letters Part B, Appli-Cations: An International Journal of Research and Surveys, 6 (2015), 1797-1804.   Google Scholar

[12]

J. G. SunS. M. Song and G. Q. Wu, Fault-tolerant track control of hypersonic vehicle based on fast terminal sliding mode, Journal of Spacecraft and Rockets, 54 (2017), 1304-1316.  doi: 10.2514/1.A33890.  Google Scholar

[13]

R. Y. QiY. H. Huang and B. Jiang, Adaptive backstepping control for a hypersonic vehicle with uncertain parameters and actuator faults, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 227 (2013), 51-61.  doi: 10.1177/0959651812450134.  Google Scholar

[14]

Y. F. Xu, B. Jiang and Z. F. Gao, Fault tolerant tracking control for near space hypersonic vehicle via neural network, 3rd Systems and Control in Aeronautics and Astronautics (ISSCAA) International Symposium, (2010), 637–642. doi: 10.1109/ISSCAA.2010.5633189.  Google Scholar

[15]

C. PengX. M. Wang and R. Xie, Fault-tolerant control for hypersonic vehicle with system uncertainty, Journal of Beijing University of Aeronautics and Astronautics, 42 (2016), 1414-1421.   Google Scholar

[16]

Z. F. GaoJ. X. Lin and T. Cao, Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault, International Journal of Control Automation and Systems, 13 (2015), 672-679.  doi: 10.1007/s12555-014-0169-2.  Google Scholar

[17]

J. T. ParkerA. SerraniY. StephenA. B. Michael and B. D. David, Control-oriented modeling of an air-breathing hypersonic vehicle, Journal of Guidance Control and Dynamics, 30 (2007), 856-869.  doi: 10.2514/1.27830.  Google Scholar

[18]

D. O. Sigthorsson, Control-Oriented Modeling and Output Feedback Control of Hypersonic Air-Breathing Vehicles, Ph.D thesis, The Ohio State University, 2008. Google Scholar

[19]

A. Marcos and S. Bennani, LPV modeling, analysis and design in space systems: Rationale, objectives and limitations, AIAA Guidance, Navigation, and Control Conference, (2009). doi: 10.2514/6.2009-5633.  Google Scholar

[20]

G. B. CaiG. R. Duan and C. H. Hu, A velocity-based LPV modeling and control framework for an airbreathing hypersonic vehicle, International Journal of Innovative Computing Information and Control, 7 (2011), 2269-2281.   Google Scholar

[21]

Z. D. WangG. L. Wei and G. Feng, Reliable control for discrete-time piecewise linear systems with infinite distributed delays, Automatica J. IFAC, 45 (2009), 2991-2994.  doi: 10.1016/j.automatica.2009.09.012.  Google Scholar

[22]

Z. F. GaoB. JiangP. ShiJ. Y. Liu and Y. F. Xu, Passive fault-tolerant control design for near-space hypersonic vehicle dynamical system, Circuits, Systems, and Signal Processing, 31 (2012), 565-581.  doi: 10.1007/s00034-011-9385-7.  Google Scholar

[23]

S. Gao and J. S. Mei, Fault tolerant control of actuator faults for input nonlinear systems, Information and Control, 44 (2015), 463-468.   Google Scholar

[24]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to $H_\infty$ control, International Journal of Robust and Nonlinear Control, 4 (1994), 421-448.  doi: 10.1002/rnc.4590040403.  Google Scholar

[25]

M. Corless and J. Tu, State and input estimation for a class of uncertain systems, Automatica J. IFAC, 34 (1998), 757-764.  doi: 10.1016/S0005-1098(98)00013-2.  Google Scholar

[26]

F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. J. Yu and L. Jennings, Visual MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.  Google Scholar

[27]

B. LiX. QianJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[28]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, Journal of Industrial and Management Optimization, 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.  Google Scholar

[29]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in non-regenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.   Google Scholar

[30]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400.   Google Scholar

show all references

References:
[1]

C. F. ZhangQ. Zong and Q. Dong, A survey of models and control problems of hypersonic vehicles, Information and Control, 46 (2017), 90-102.   Google Scholar

[2]

H. X. ZhangZ. F. GongG. B. Cai and R. Song, Reentry tracking control of hypersonic vehicle with complicated constraints, Journal of Ordnance Equipment Engineering, 40 (2019), 1-6.   Google Scholar

[3]

L. HuangZ. S. Duan and J. Y. Yang, Challenges of control science in near space hypersonic aircrafts, Control Theory and Applications, 28 (2011), 1496-1505.   Google Scholar

[4]

C. Y. SunC. X. Mu and Y. Yu, Some control problems for near space hypersonic vehicles, Acta Automatica Sinica, 39 (2013), 1901-1913.  doi: 10.3724/SP.J.1004.2013.01901.  Google Scholar

[5]

Y. WangY. Zhang and C. Bai, Review of guidance and control approaches for air-breathing hypersonic vehicle, Journal of Ordnance Equipment Engineering, 38 (2017), 72-76.   Google Scholar

[6]

B. Fidan, M. Mirmirani and P. Ioannou, Flight dynamics and control of air-breathing hypersonic vehicles: Review and new directions, 12th AIAA International Space Planes and Hypersonic Systems and technologies, (2003). doi: 10.2514/6.2003-7081.  Google Scholar

[7]

J. J. HeR. Y. Qi and B. Jiang, Adaptive output feedback fault-tolerant control design for hypersonic flight vehicles, Journal of the Franklin Institute, 352 (2015), 1811-1835.  doi: 10.1016/j.jfranklin.2015.01.016.  Google Scholar

[8]

Q. C. YangQ. Zong and Q. Dong, Reentry control and performance evaluation method for hypersonic vehicle, Information and Control, 46 (2017), 33-40.   Google Scholar

[9]

X. GuanJ. Zhao and Y. He, Track technology of hypersonic aircraft in near space, Journal of Ordnance Equipment Engineering, 32 (2011), 4-6.   Google Scholar

[10]

H. B. SunS. H. Li and C. Y. Sun, Robust adaptive integral-sliding-mode fault-tolerant control for air-breathing hypersonic vehicles, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 226 (2012), 1344-1355.   Google Scholar

[11]

Z. F. GaoT. Cao and J. X. Lin, Sliding mode fault tolerant tracking control for a flexible hypersonic vehicle with actuator faults, ICIC Express Letters Part B, Appli-Cations: An International Journal of Research and Surveys, 6 (2015), 1797-1804.   Google Scholar

[12]

J. G. SunS. M. Song and G. Q. Wu, Fault-tolerant track control of hypersonic vehicle based on fast terminal sliding mode, Journal of Spacecraft and Rockets, 54 (2017), 1304-1316.  doi: 10.2514/1.A33890.  Google Scholar

[13]

R. Y. QiY. H. Huang and B. Jiang, Adaptive backstepping control for a hypersonic vehicle with uncertain parameters and actuator faults, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 227 (2013), 51-61.  doi: 10.1177/0959651812450134.  Google Scholar

[14]

Y. F. Xu, B. Jiang and Z. F. Gao, Fault tolerant tracking control for near space hypersonic vehicle via neural network, 3rd Systems and Control in Aeronautics and Astronautics (ISSCAA) International Symposium, (2010), 637–642. doi: 10.1109/ISSCAA.2010.5633189.  Google Scholar

[15]

C. PengX. M. Wang and R. Xie, Fault-tolerant control for hypersonic vehicle with system uncertainty, Journal of Beijing University of Aeronautics and Astronautics, 42 (2016), 1414-1421.   Google Scholar

[16]

Z. F. GaoJ. X. Lin and T. Cao, Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault, International Journal of Control Automation and Systems, 13 (2015), 672-679.  doi: 10.1007/s12555-014-0169-2.  Google Scholar

[17]

J. T. ParkerA. SerraniY. StephenA. B. Michael and B. D. David, Control-oriented modeling of an air-breathing hypersonic vehicle, Journal of Guidance Control and Dynamics, 30 (2007), 856-869.  doi: 10.2514/1.27830.  Google Scholar

[18]

D. O. Sigthorsson, Control-Oriented Modeling and Output Feedback Control of Hypersonic Air-Breathing Vehicles, Ph.D thesis, The Ohio State University, 2008. Google Scholar

[19]

A. Marcos and S. Bennani, LPV modeling, analysis and design in space systems: Rationale, objectives and limitations, AIAA Guidance, Navigation, and Control Conference, (2009). doi: 10.2514/6.2009-5633.  Google Scholar

[20]

G. B. CaiG. R. Duan and C. H. Hu, A velocity-based LPV modeling and control framework for an airbreathing hypersonic vehicle, International Journal of Innovative Computing Information and Control, 7 (2011), 2269-2281.   Google Scholar

[21]

Z. D. WangG. L. Wei and G. Feng, Reliable control for discrete-time piecewise linear systems with infinite distributed delays, Automatica J. IFAC, 45 (2009), 2991-2994.  doi: 10.1016/j.automatica.2009.09.012.  Google Scholar

[22]

Z. F. GaoB. JiangP. ShiJ. Y. Liu and Y. F. Xu, Passive fault-tolerant control design for near-space hypersonic vehicle dynamical system, Circuits, Systems, and Signal Processing, 31 (2012), 565-581.  doi: 10.1007/s00034-011-9385-7.  Google Scholar

[23]

S. Gao and J. S. Mei, Fault tolerant control of actuator faults for input nonlinear systems, Information and Control, 44 (2015), 463-468.   Google Scholar

[24]

P. Gahinet and P. Apkarian, A linear matrix inequality approach to $H_\infty$ control, International Journal of Robust and Nonlinear Control, 4 (1994), 421-448.  doi: 10.1002/rnc.4590040403.  Google Scholar

[25]

M. Corless and J. Tu, State and input estimation for a class of uncertain systems, Automatica J. IFAC, 34 (1998), 757-764.  doi: 10.1016/S0005-1098(98)00013-2.  Google Scholar

[26]

F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. J. Yu and L. Jennings, Visual MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.  Google Scholar

[27]

B. LiX. QianJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.  Google Scholar

[28]

B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, Journal of Industrial and Management Optimization, 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.  Google Scholar

[29]

B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in non-regenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.   Google Scholar

[30]

B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400.   Google Scholar

Figure 1.  Curve of flight path angle under actuator fault
Figure 2.  Structure diagram of control system
Figure 3.  Velocity curve under actuator fault
Figure 4.  Flight path angle curve under actuator fault
Figure 5.  Attack angle curve under actuator fault
Figure 6.  Altitude curve under actuator fault
Figure 7.  Velocity tracking performance
Figure 8.  Flight path angle tracking performance
Figure 9.  Attack angle tracking performance
Figure 10.  Altitude tracking performance
Figure 11.  Control surface deflection angle curve
Figure 12.  Diffuser area ratio curve
[1]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-28. doi: 10.3934/jimo.2019096

[2]

Han Wu, Changfan Zhang, Jing He, Kaihui Zhao. Distributed fault-tolerant consensus tracking for networked non-identical motors. Journal of Industrial & Management Optimization, 2017, 13 (2) : 917-929. doi: 10.3934/jimo.2016053

[3]

Xiaohu Qian, Min Huang, Wai-Ki Ching, Loo Hay Lee, Xingwei Wang. Mechanism design in project procurement auctions with cost uncertainty and failure risk. Journal of Industrial & Management Optimization, 2019, 15 (1) : 131-157. doi: 10.3934/jimo.2018036

[4]

Ata Allah Taleizadeh, Biswajit Sarkar, Mohammad Hasani. Delayed payment policy in multi-product single-machine economic production quantity model with repair failure and partial backordering. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-24. doi: 10.3934/jimo.2019002

[5]

Gilles Pijaudier-Cabot, David Grégoire. A review of non local continuum damage: Modelling of failure?. Networks & Heterogeneous Media, 2014, 9 (4) : 575-597. doi: 10.3934/nhm.2014.9.575

[6]

Jop Briët, Assaf Naor, Oded Regev. Locally decodable codes and the failure of cotype for projective tensor products. Electronic Research Announcements, 2012, 19: 120-130. doi: 10.3934/era.2012.19.120

[7]

Jason R. Scott, Stephen Campbell. Auxiliary signal design for failure detection in differential-algebraic equations. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 151-179. doi: 10.3934/naco.2014.4.151

[8]

Tatiana Filippova. Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty. Conference Publications, 2011, 2011 (Special) : 410-419. doi: 10.3934/proc.2011.2011.410

[9]

Mostafa Karimi, Noor Akma Ibrahim, Mohd Rizam Abu Bakar, Jayanthi Arasan. Rank-based inference for the accelerated failure time model in the presence of interval censored data. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 107-112. doi: 10.3934/naco.2017007

[10]

Gokhan Calis, O. Ozan Koyluoglu. Architecture-aware coding for distributed storage: Repairable block failure resilient codes. Advances in Mathematics of Communications, 2018, 12 (3) : 465-503. doi: 10.3934/amc.2018028

[11]

Thanh-Tung Pham, Thomas Green, Jonathan Chen, Phuong Truong, Aditya Vaidya, Linda Bushnell. A salinity sensor system for estuary studies. Networks & Heterogeneous Media, 2009, 4 (2) : 381-392. doi: 10.3934/nhm.2009.4.381

[12]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[13]

Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643

[14]

Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553

[15]

Shalela Mohd Mahali, Song Wang, Xia Lou. Determination of effective diffusion coefficients of drug delivery devices by a state observer approach. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1119-1136. doi: 10.3934/dcdsb.2011.16.1119

[16]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[17]

Zhigang Ren, Shan Guo, Zhipeng Li, Zongze Wu. Adjoint-based parameter and state estimation in 1-D magnetohydrodynamic (MHD) flow system. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1579-1594. doi: 10.3934/jimo.2018022

[18]

Dinh Cong Huong, Mai Viet Thuan. State transformations of time-varying delay systems and their applications to state observer design. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 413-444. doi: 10.3934/dcdss.2017020

[19]

Kareem T. Elgindy. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. Journal of Industrial & Management Optimization, 2018, 14 (2) : 473-496. doi: 10.3934/jimo.2017056

[20]

Chao Xu, Yimeng Dong, Zhigang Ren, Huachen Jiang, Xin Yu. Sensor deployment for pipeline leakage detection via optimal boundary control strategies. Journal of Industrial & Management Optimization, 2015, 11 (1) : 199-216. doi: 10.3934/jimo.2015.11.199

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (15)
  • HTML views (55)
  • Cited by (0)

[Back to Top]