\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer

  • * Corresponding author: Guangbin Cai

    * Corresponding author: Guangbin Cai 

This work was supported in part by the National Natural Science Foundation of China under grant number 61773387, and by China Postdoctoral Fund under grant numbers 2017T100770 and 2016M590971

Abstract Full Text(HTML) Figure(12) Related Papers Cited by
  • Considering the parameter uncertainty and actuator failure of hypersonic vehicle during maneuvering, this paper proposes a state observer-based hypersonic vehicle fault-tolerant control (FTC) system design method. Because hypersonic vehicles are prone to failure during maneuvering, the state quantity cannot be measured. First, a state observer-based FTC control method is designed for the linear parameter-varying (LPV) model with parameter uncertainty and partial failure of the actuator. Then, the Lyapunov function is used to demonstrate the asymptotic stability of the closed-loop system. The performance index function proved that the system has robust stability under the disturbance condition. Subsequently, the linear matrix inequality (LMI) was used to solve the observer parameters and the corresponding gain matrix in the control system. The simulation results indicated that the designed controller can track the flight command signal stably and has strong robustness, which verified the effectiveness of the design controller.

    Mathematics Subject Classification: Primary:58F15, 58F17;Secondary:53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Curve of flight path angle under actuator fault

    Figure 2.  Structure diagram of control system

    Figure 3.  Velocity curve under actuator fault

    Figure 4.  Flight path angle curve under actuator fault

    Figure 5.  Attack angle curve under actuator fault

    Figure 6.  Altitude curve under actuator fault

    Figure 7.  Velocity tracking performance

    Figure 8.  Flight path angle tracking performance

    Figure 9.  Attack angle tracking performance

    Figure 10.  Altitude tracking performance

    Figure 11.  Control surface deflection angle curve

    Figure 12.  Diffuser area ratio curve

  • [1] G. B. CaiG. R. Duan and C. H. Hu, A velocity-based LPV modeling and control framework for an airbreathing hypersonic vehicle, International Journal of Innovative Computing Information and Control, 7 (2011), 2269-2281. 
    [2] M. Corless and J. Tu, State and input estimation for a class of uncertain systems, Automatica J. IFAC, 34 (1998), 757-764.  doi: 10.1016/S0005-1098(98)00013-2.
    [3] P. Gahinet and P. Apkarian, A linear matrix inequality approach to $H_\infty$ control, International Journal of Robust and Nonlinear Control, 4 (1994), 421-448.  doi: 10.1002/rnc.4590040403.
    [4] Z. F. GaoT. Cao and J. X. Lin, Sliding mode fault tolerant tracking control for a flexible hypersonic vehicle with actuator faults, ICIC Express Letters Part B, Appli-Cations: An International Journal of Research and Surveys, 6 (2015), 1797-1804. 
    [5] Z. F. GaoB. JiangP. ShiJ. Y. Liu and Y. F. Xu, Passive fault-tolerant control design for near-space hypersonic vehicle dynamical system, Circuits, Systems, and Signal Processing, 31 (2012), 565-581.  doi: 10.1007/s00034-011-9385-7.
    [6] Z. F. GaoJ. X. Lin and T. Cao, Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor fault, International Journal of Control Automation and Systems, 13 (2015), 672-679.  doi: 10.1007/s12555-014-0169-2.
    [7] S. Gao and J. S. Mei, Fault tolerant control of actuator faults for input nonlinear systems, Information and Control, 44 (2015), 463-468. 
    [8] X. GuanJ. Zhao and Y. He, Track technology of hypersonic aircraft in near space, Journal of Ordnance Equipment Engineering, 32 (2011), 4-6. 
    [9] J. J. HeR. Y. Qi and B. Jiang, Adaptive output feedback fault-tolerant control design for hypersonic flight vehicles, Journal of the Franklin Institute, 352 (2015), 1811-1835.  doi: 10.1016/j.jfranklin.2015.01.016.
    [10] L. HuangZ. S. Duan and J. Y. Yang, Challenges of control science in near space hypersonic aircrafts, Control Theory and Applications, 28 (2011), 1496-1505. 
    [11] B. Fidan, M. Mirmirani and P. Ioannou, Flight dynamics and control of air-breathing hypersonic vehicles: Review and new directions, 12th AIAA International Space Planes and Hypersonic Systems and technologies, (2003). doi: 10.2514/6.2003-7081.
    [12] B. LiX. QianJ. SunK. L. Teo and C. J. Yu, A model of distributionally robust two-stage stochastic convex programming with linear recourse, Applied Mathematical Modelling, 58 (2018), 86-97.  doi: 10.1016/j.apm.2017.11.039.
    [13] B. Li and Y. Rong, Joint transceiver optimization for wireless information and energy transfer in non-regenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362. 
    [14] B. LiY. RongJ. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, Journal of Industrial and Management Optimization, 16 (2017), 464-474.  doi: 10.1109/TWC.2016.2625246.
    [15] B. LiJ. SunH. L. Xu and M. Zhang, A class of two-stage distributionally robust stochastic games, Journal of Industrial and Management Optimization, 15 (2019), 387-400. 
    [16] A. Marcos and S. Bennani, LPV modeling, analysis and design in space systems: Rationale, objectives and limitations, AIAA Guidance, Navigation, and Control Conference, (2009). doi: 10.2514/6.2009-5633.
    [17] J. T. ParkerA. SerraniY. StephenA. B. Michael and B. D. David, Control-oriented modeling of an air-breathing hypersonic vehicle, Journal of Guidance Control and Dynamics, 30 (2007), 856-869.  doi: 10.2514/1.27830.
    [18] C. PengX. M. Wang and R. Xie, Fault-tolerant control for hypersonic vehicle with system uncertainty, Journal of Beijing University of Aeronautics and Astronautics, 42 (2016), 1414-1421. 
    [19] R. Y. QiY. H. Huang and B. Jiang, Adaptive backstepping control for a hypersonic vehicle with uncertain parameters and actuator faults, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 227 (2013), 51-61.  doi: 10.1177/0959651812450134.
    [20] D. O. Sigthorsson, Control-Oriented Modeling and Output Feedback Control of Hypersonic Air-Breathing Vehicles, Ph.D thesis, The Ohio State University, 2008.
    [21] H. B. SunS. H. Li and C. Y. Sun, Robust adaptive integral-sliding-mode fault-tolerant control for air-breathing hypersonic vehicles, Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 226 (2012), 1344-1355. 
    [22] C. Y. SunC. X. Mu and Y. Yu, Some control problems for near space hypersonic vehicles, Acta Automatica Sinica, 39 (2013), 1901-1913.  doi: 10.3724/SP.J.1004.2013.01901.
    [23] J. G. SunS. M. Song and G. Q. Wu, Fault-tolerant track control of hypersonic vehicle based on fast terminal sliding mode, Journal of Spacecraft and Rockets, 54 (2017), 1304-1316.  doi: 10.2514/1.A33890.
    [24] Z. D. WangG. L. Wei and G. Feng, Reliable control for discrete-time piecewise linear systems with infinite distributed delays, Automatica J. IFAC, 45 (2009), 2991-2994.  doi: 10.1016/j.automatica.2009.09.012.
    [25] Y. WangY. Zhang and C. Bai, Review of guidance and control approaches for air-breathing hypersonic vehicle, Journal of Ordnance Equipment Engineering, 38 (2017), 72-76. 
    [26] Y. F. Xu, B. Jiang and Z. F. Gao, Fault tolerant tracking control for near space hypersonic vehicle via neural network, 3rd Systems and Control in Aeronautics and Astronautics (ISSCAA) International Symposium, (2010), 637–642. doi: 10.1109/ISSCAA.2010.5633189.
    [27] F. YangK. L. TeoR. LoxtonV. RehbockB. LiC. J. Yu and L. Jennings, Visual MISER: An efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.  doi: 10.3934/jimo.2016.12.781.
    [28] Q. C. YangQ. Zong and Q. Dong, Reentry control and performance evaluation method for hypersonic vehicle, Information and Control, 46 (2017), 33-40. 
    [29] C. F. ZhangQ. Zong and Q. Dong, A survey of models and control problems of hypersonic vehicles, Information and Control, 46 (2017), 90-102. 
    [30] H. X. ZhangZ. F. GongG. B. Cai and R. Song, Reentry tracking control of hypersonic vehicle with complicated constraints, Journal of Ordnance Equipment Engineering, 40 (2019), 1-6. 
  • 加载中
Open Access Under a Creative Commons license

Figures(12)

SHARE

Article Metrics

HTML views(1270) PDF downloads(499) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return