Advanced Search
Article Contents
Article Contents

Collaborative environmental management for transboundary air pollution problems: A differential levies game

  • * Corresponding author: David W. K. Yeung

    * Corresponding author: David W. K. Yeung 
Abstract Full Text(HTML) Related Papers Cited by
  • This paper develops a new cooperative dynamic time consistent model for studying regional air pollution management issues in a cooperative game framework for formulating pollution control policies and dynamically consistent compensation mechanisms. As air pollution is a transboundary issue, unilateral response on the part of one region is generally ineffective. Regional cooperation is essential to resolve serious environmental problems. In addition, the long-term environmental impacts are closely related to the building up existing air pollution stocks in Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), Respirable suspended particulates (RSP) and Ozone (O3). A cooperative dynamic game with different types of pollutants is developed. We characterize the non-cooperative outcomes, and examine the cooperative arrangements, group optimal actions, and individually rational imputations. In particular, an air pollution levy consisting of four components involving damage charges on emissions of sulfur dioxide, nitrogen dioxide, respirable suspended particulates and ozone depletion materials. Cooperative games offer the possibility of socially optimal and group efficient solutions to the lack of cooperation among different regions involving decision problems among strategic actors. This paper makes a valuable contribution to the literature as this is the first cooperative dynamic time consistent model for regional management of different types of air pollutants.

    Mathematics Subject Classification: Primary: 91A12, 91A35.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. AntociP. Russu and E. Ticci, Environmental externalities and immiserizing structural changes in an economy with heterogeneous agents, Ecological Economics, 81 (2012), 80-91.  doi: 10.1016/j.ecolecon.2012.06.004.
    [2] M. BretonG. Zaccour and M. Zahaf, A differential game of joint implementation of environmental projects, Automatica J., 41 (2005), 1737-1749.  doi: 10.1016/j.automatica.2005.05.004.
    [3] M. BretonG. Zaccour and M. Zahaf, A game-theoretic formulation of joint implementation of environmental projects, European J. Oper. Res., 168 (2005), 221-239.  doi: 10.1016/j.ejor.2004.04.026.
    [4] A. J. Caplan and E. C. D. Silva, Federal acid rain games, J. of Urban Economics, 46 (1999), 25-52.  doi: 10.1006/juec.1998.2109.
    [5] P. Chander and H. Tulkens, A core-theoretic solution for the design of cooperative agreements on transfrontier pollution, International Tax and Public Finance, 2 (1995), 279-294.  doi: 10.1007/BF00877502.
    [6] P. Chander and H. Tulkens, (1997) The core of an economy with multilateral environmental externalities, Internat. J. Game Theory, 26 (1997), 379–401. doi: 10.1007/BF01263279.
    [7] B. R. Copeland, Pollution content tariffs, environmental rent shifting, and the control of cross border pollution, J. of International Economics, 40 (1996), 459-476.  doi: 10.1016/0022-1996(95)01415-2.
    [8] P. Courtois and T. Tazdaït, Bargaining over a climate deal: Deadline and delay, Ann. Oper. Res., 220 (2014), 205-221.  doi: 10.1007/s10479-011-1018-9.
    [9] A. Dinar and A. Wolf, Economic potential and political considerations of regional water trade: The Western Middle East example, Resource and Energy Economics, 16 (1994), 335-356.  doi: 10.1016/0928-7655(94)90025-6.
    [10] E. J. Dockner and N. V. Long, International pollution control: Cooperative versus noncooperative strategies, J. of Environmental Economics and Management, 25 (1993), 13-29.  doi: 10.1006/jeem.1993.1023.
    [11] M. FinusP. Cooper and C. Almer, The use of international agreements in transnational environmental protection, Oxford Economic Papers, 69 (2017), 333-344.  doi: 10.1093/oep/gpx018.
    [12] K. FredjG. Martín-Herrán and G. Zaccour, Slowing deforestation pace through subsidies: A differential game, Automatica J., 40 (2004), 301-309.  doi: 10.1016/j.automatica.2003.10.020.
    [13] M. GermainaH. Tulkens and A. Magnus, Dynamic core-theoretic cooperation in a two-dimensional international environmental model, Math. Social Sci., 59 (2010), 208-226.  doi: 10.1016/j.mathsocsci.2009.10.003.
    [14] L. P. HildebrandV. Pebbles and D. A. Fraser, Cooperative ecosystem management across the Canada–US border: Approaches and experiences of transboundary programs in the Gulf of Maine, Great Lakes and Georgia Basin/Puget Sound, Ocean & Coastal Management, 45 (2002), 421-457.  doi: 10.1016/S0964-5691(02)00078-9.
    [15] J. Hu, Research on Local Government Collaboration in Transboundary Environmental Governance, Thesis for Doctor's Degree, Fudan University, Shanghai, China, (2010).
    [16] S. Jorgensen and G. Zaccour, Time consistent side payments in a dynamic game of downstream pollution, J. Econom. Dynam. Control, 25 (2001), 1973-1987.  doi: 10.1016/S0165-1889(00)00013-0.
    [17] V. Kaitala, M. Pohjola and O. Tahvonen, Transboundary air pollution between Finland and the USSR - a dynamic acid rain game, in Dynamic Games in Economic Analysis, Lecture Notes in Control and Information Sciences, 157, Springer, 1991, 183–192. doi: 10.1007/BFb0006240.
    [18] V. KaitalaM. Pohjola and O. Tahvonen, An economic analysis of transboundary air pollution between Finland and the Soviet Union, Scandinavian J. of Economics, 94 (1992), 409-424. 
    [19] V. KaitalaM. Pohjola and O. Tahvonen, Transboundary air pollution and soil acidification: A dynamic analysis of an acid rain game between Finland and the USSR, Environmental and Resource Economics, 2 (1992), 161-181.  doi: 10.1007/BF00338241.
    [20] V. Kaitala, K. G. Maler and H. Tulkens, The acid rain game as a resource allocation process, with application to negotiations between Finland, Russia and Estonia, in Public Goods, Environmental Externalities and Fiscal Competition, 97, Springer, Boston, MA, 1995, 135–152. doi: 10.1007/978-0-387-25534-7_9.
    [21] T. R. Lakshmanan and F. Lo, A regional economic model for the assessment of effects of air pollution abatement, Environment and Planning, 4 (1972), 73-97. 
    [22] F. Lera-LopezJ. Faulin and M. Sanchez, Determinants of the willingness-to-pay for reducing the environmental impacts of road transportation, Transportation Research Part D Transport and Environment, 17 (2012), 215-220.  doi: 10.1016/j.trd.2011.11.002.
    [23] S. Li, A differential game of transboundary industrial pollution with emission permits trading, J. Optim. Theory Appl., 163 (2014), 642-659.  doi: 10.1007/s10957-013-0384-7.
    [24] M. C. LiuL. YangQ. W. Min and Y. Y. Bai, Eco-compensation standards for agricultural water conservation: A case study of the paddy land-to-dry land program in China, Agricultural Water Management, 204 (2018), 192-197.  doi: 10.1016/j.agwat.2018.04.004.
    [25] K. G. Mäler, The acid rain game, in Valuation Methods and Policy Making in Environmental Economics, Elsevier, Amsterdam, 1989, 231–252.
    [26] J. R. Markusen, International externalities and optimal tax structures, J. of International Economics, 5 (1975), 15-29.  doi: 10.1016/0022-1996(75)90025-2.
    [27] Y. Nagase and E. C. D. Silva, Acid rain in China and Japan: A game-theoretic analysis, Regional Science and Urban Economics, 37 (2007), 100-120.  doi: 10.1016/j.regsciurbeco.2006.08.001.
    [28] T. Paksoy and E. Ozceylan, Environmentally conscious optimization of supply chain networks, J. of the Operational Research Society, 65 (2013), 855-872.  doi: 10.1057/jors.2012.95.
    [29] T. PaksoyN. Y. Pehlivan and E. Ozceylan, Fuzzy multi objective optimization of a green supply chain network with risk management of that includes environmental hazards, Human and Ecological Risk Assessment, 18 (2012), 1120-1151.  doi: 10.1080/10807039.2012.707940.
    [30] L. Petrosyan and G. Zaccour, Time-consistent Shapley value allocation of pollution cost reduction, J. Econom. Dynam. Control, 27 (2003), 381-398.  doi: 10.1016/S0165-1889(01)00053-7.
    [31] K. Prager, Agri-environmental collaboratives for landscape management in Europe, Current Opinion in Environmental Sustainability, 12 (2015), 59-66.  doi: 10.1016/j.cosust.2014.10.009.
    [32] K. Prager, Agri-environmental collaboratives as bridging organisations in landscape management, J. of Environmental Management, 161 (2015), 375-384.  doi: 10.1016/j.jenvman.2015.07.027.
    [33] O. TahvonenV. Kaitala and M. Pohjola, A Finnish-Soviet acid rain game: Noncooperative equilibria, cost efficiency, and sulphur agreements, J. of Environmental Economics and Management, 24 (1993), 87-100.  doi: 10.1006/jeem.1993.1006.
    [34] H. Tulkens, An economic model of international negotiations relating to transfrontier pollution, in Public Goods, Environmental Externalities and Fiscal Competition, Springer, Boston, MA, 2006, 107–121. doi: 10.1007/978-0-387-25534-7_7.
    [35] P. Usta, S. Ergun and S. Z. Alparslan-Gok, A cooperative game theory approach to post disaster housing problem, in Handbook of Research on Emergent Applications of Optimization Algorithms, IGI Global, USA, 2018, 314–325.
    [36] A. A. Vasin, Game-theoretic study of electricity market mechanisms, Procedia Computer Science, 31 (2014), 124-132.  doi: 10.1016/j.procs.2014.05.252.
    [37] A. A. Vasin and A. G. Gusev, Game-theoretical control models for electric power and capacity market, J. Comput. Syst. Sci. Int., 51 (2012), 792-801.  doi: 10.1134/S1064230712060135.
    [38] G. W. WeberS. Z. Alparslan-Gok and B. Soyler, A new mathematical approach in environmental and life sciences: gene-environment networks and their dynamics, Environmental Modelling and Assessment, 14 (2009), 267-288.  doi: 10.1007/s10666-007-9137-z.
    [39] G. W. WeberP. TaylanS. Z. Alparslan-GokS. Ozogue and B. Akteke-Ozturk, Optimization of gene-environment networks in the presence of errors and uncertainty with Chebychev approximation, TOP, 16 (2008), 284-318.  doi: 10.1007/s11750-008-0052-5.
    [40] J. WesterinkR. JongeneelN. PolmanK. PragerJ. FranksP. Dupraz and E. Mettepenningen, Collaborative governance arrangements to deliver spatially coordinated agri-environmental management, Land Use Policy, 69 (2017), 176-192.  doi: 10.1016/j.landusepol.2017.09.002.
    [41] D. Yaron and A. Ratner, Regional cooperation in the use of irrigation water: Efficiency and income distribution, Agricultural Economics, 4 (1990), 45-58.  doi: 10.1016/0169-5150(90)90019-W.
    [42] D. W. K. Yeung, Dynamically consistent cooperative solution in a differential game of transboundary industrial pollution., J. Optim. Theory Appl., 134 (2007), 143-160.  doi: 10.1007/s10957-007-9240-y.
    [43] D. W. K. Yeung, Dynamically consistent solution for a pollution management game in collaborative abatement with uncertain future payoffs, Int. Game Theory Rev., 10 (2008), 517-538.  doi: 10.1142/S0219198908002072.
    [44] D. W. K. Yeung, Dynamically consistent collaborative environmental management with production technique choices, Ann. Oper. Res., 220 (2014), 181-204.  doi: 10.1007/s10479-011-0844-0.
    [45] D. W. K. Yeung and L. A. Petrosyan, Subgame consistent solution of a cooperative stochastic differential game with nontransferable payoffs, J. Optim. Theory Appl., 124 (2005), 701-724. doi: 10.1007/s10957-004-1181-0.
    [46] D. W. K. Yeung and L. A. Petrosyan, Dynamically stable corporate joint ventures, Automatica J., 42 (2006), 365-370.  doi: 10.1016/j.automatica.2005.10.010.
    [47] D. W. K. Yeung and L. A. Petrosyan, Cooperative Stochastic Differential Games, Springer Series in Operations Research and Financial Engineering, Springer-Verlag, New York, 2006. doi: 10.1007/0-387-27622-X.
    [48] D. W. K. Yeung and L. A. Petrosyan, A cooperative stochastic differential game of transboundary industrial pollution, Automatica J., 44 (2008), 1532-1544.  doi: 10.1016/j.automatica.2008.03.005.
    [49] D. W. K. Yeung and L. A. Petrosyan, Managing catastrophe-bound industrial pollution with game-theoretic algorithm: The St. Petersburg initiative, Contributions to Game Theory and Management, St Petersburg State University, 2008, 524–538.
    [50] D. W. K. Yeung and L. A. Petrosyan, Subgame consistent solutions for cooperative stochastic dynamic games, J. Optim. Theory Appl., 145 (2010), 579-596.  doi: 10.1007/s10957-010-9702-5.
    [51] D. W. K. Yeung and L. A. Petrosyan, Subgame Consistent Economic Optimization: An Advanced Cooperative Dynamic Game Analysis, Static & Dynamic Game Theory: Foundations & Applications, Birkhäuser/Springer, New York, 2012. doi: 10.1007/978-0-8176-8262-0.
    [52] D. W. K. Yeung and Y. X. Zhang, Industrial Pollution Problems in Pearl-River-Delta and Mechanism Design for an Inter-regional Management Regime, The Seventh Annual Conference The Asian Studies Association of Hong Kong (ASAHK), Shue Yan University, HK, 2012.
    [53] D. W. K. Yeung, L. A. Petrosyan, Y. X. Zhang and F. Cheung, BEST SCORES Solution to the Catastrophe Bound Environment, Nova Science, New York, 2017.
    [54] A. Zaldivar-JiménezP. Ladrón-de-Guevara-PorrasR. Perez-CeballosS. Diaz-Mondragón and R. Rosado-Solorzano, US-Mexico joint Gulf of Mexico large marine ecosystem based assessment and management: Experience in community involvement and mangrove wetland restoration in Términos lagoon, Mexico, Environmental Development, 22 (2017), 206-213.  doi: 10.1016/j.envdev.2017.02.007.
    [55] Y. X. ZhangQ. W. MinY. Y. Bai and X. D. Li, Practices of cooperation for eco-environmental conservation (CEC) in China and theoretic framework of CEC: A new perspective, J. of Cleaner Production, 179 (2018), 515-526.  doi: 10.1016/j.jclepro.2018.01.112.
  • 加载中

Article Metrics

HTML views(1577) PDF downloads(702) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint