-
Previous Article
Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem
- JIMO Home
- This Issue
- Next Article
Collaborative environmental management for transboundary air pollution problems: A differential levies game
1. | SRS Consortium for Advanced Study in Dynamic Cooperative Games, Hong Kong Shue Yan University, Hong Kong |
2. | Center of Game Theory, St Petersburg State University, St Petersburg, 198904, Russia |
3. | Decision Sciences and Modelling Program, Victoria University, Australia |
4. | College of Environmental Science and Engineering, Nankai University, China |
5. | MOE Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, China |
This paper develops a new cooperative dynamic time consistent model for studying regional air pollution management issues in a cooperative game framework for formulating pollution control policies and dynamically consistent compensation mechanisms. As air pollution is a transboundary issue, unilateral response on the part of one region is generally ineffective. Regional cooperation is essential to resolve serious environmental problems. In addition, the long-term environmental impacts are closely related to the building up existing air pollution stocks in Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), Respirable suspended particulates (RSP) and Ozone (O3). A cooperative dynamic game with different types of pollutants is developed. We characterize the non-cooperative outcomes, and examine the cooperative arrangements, group optimal actions, and individually rational imputations. In particular, an air pollution levy consisting of four components involving damage charges on emissions of sulfur dioxide, nitrogen dioxide, respirable suspended particulates and ozone depletion materials. Cooperative games offer the possibility of socially optimal and group efficient solutions to the lack of cooperation among different regions involving decision problems among strategic actors. This paper makes a valuable contribution to the literature as this is the first cooperative dynamic time consistent model for regional management of different types of air pollutants.
References:
[1] |
A. Antoci, P. Russu and E. Ticci,
Environmental externalities and immiserizing structural changes in an economy with heterogeneous agents, Ecological Economics, 81 (2012), 80-91.
doi: 10.1016/j.ecolecon.2012.06.004. |
[2] |
M. Breton, G. Zaccour and M. Zahaf,
A differential game of joint implementation of environmental projects, Automatica J., 41 (2005), 1737-1749.
doi: 10.1016/j.automatica.2005.05.004. |
[3] |
M. Breton, G. Zaccour and M. Zahaf,
A game-theoretic formulation of joint implementation of environmental projects, European J. Oper. Res., 168 (2005), 221-239.
doi: 10.1016/j.ejor.2004.04.026. |
[4] |
A. J. Caplan and E. C. D. Silva,
Federal acid rain games, J. of Urban Economics, 46 (1999), 25-52.
doi: 10.1006/juec.1998.2109. |
[5] |
P. Chander and H. Tulkens,
A core-theoretic solution for the design of cooperative agreements on transfrontier pollution, International Tax and Public Finance, 2 (1995), 279-294.
doi: 10.1007/BF00877502. |
[6] |
P. Chander and H. Tulkens, (1997) The core of an economy with multilateral environmental
externalities, Internat. J. Game Theory, 26 (1997), 379–401.
doi: 10.1007/BF01263279. |
[7] |
B. R. Copeland,
Pollution content tariffs, environmental rent shifting, and the control of cross border pollution, J. of International Economics, 40 (1996), 459-476.
doi: 10.1016/0022-1996(95)01415-2. |
[8] |
P. Courtois and T. Tazdaït,
Bargaining over a climate deal: Deadline and delay, Ann. Oper. Res., 220 (2014), 205-221.
doi: 10.1007/s10479-011-1018-9. |
[9] |
A. Dinar and A. Wolf,
Economic potential and political considerations of regional water trade: The Western Middle East example, Resource and Energy Economics, 16 (1994), 335-356.
doi: 10.1016/0928-7655(94)90025-6. |
[10] |
E. J. Dockner and N. V. Long,
International pollution control: Cooperative versus noncooperative strategies, J. of Environmental Economics and Management, 25 (1993), 13-29.
doi: 10.1006/jeem.1993.1023. |
[11] |
M. Finus, P. Cooper and C. Almer,
The use of international agreements in transnational environmental protection, Oxford Economic Papers, 69 (2017), 333-344.
doi: 10.1093/oep/gpx018. |
[12] |
K. Fredj, G. Martín-Herrán and G. Zaccour,
Slowing deforestation pace through subsidies: A differential game, Automatica J., 40 (2004), 301-309.
doi: 10.1016/j.automatica.2003.10.020. |
[13] |
M. Germaina, H. Tulkens and A. Magnus,
Dynamic core-theoretic cooperation in a two-dimensional international environmental model, Math. Social Sci., 59 (2010), 208-226.
doi: 10.1016/j.mathsocsci.2009.10.003. |
[14] |
L. P. Hildebrand, V. Pebbles and D. A. Fraser,
Cooperative ecosystem management across the Canada–US border: Approaches and experiences of transboundary programs in the Gulf of Maine, Great Lakes and Georgia Basin/Puget Sound, Ocean & Coastal Management, 45 (2002), 421-457.
doi: 10.1016/S0964-5691(02)00078-9. |
[15] |
J. Hu, Research on Local Government Collaboration in Transboundary Environmental Governance, Thesis for Doctor's Degree, Fudan University, Shanghai, China, (2010). Google Scholar |
[16] |
S. Jorgensen and G. Zaccour,
Time consistent side payments in a dynamic game of downstream pollution, J. Econom. Dynam. Control, 25 (2001), 1973-1987.
doi: 10.1016/S0165-1889(00)00013-0. |
[17] |
V. Kaitala, M. Pohjola and O. Tahvonen, Transboundary air pollution between Finland and the USSR - a dynamic acid rain game, in Dynamic Games in Economic Analysis, Lecture Notes in Control and Information Sciences, 157, Springer, 1991, 183–192.
doi: 10.1007/BFb0006240. |
[18] |
V. Kaitala, M. Pohjola and O. Tahvonen, An economic analysis of transboundary air pollution between Finland and the Soviet Union, Scandinavian J. of Economics, 94 (1992), 409-424. Google Scholar |
[19] |
V. Kaitala, M. Pohjola and O. Tahvonen,
Transboundary air pollution and soil acidification: A dynamic analysis of an acid rain game between Finland and the USSR, Environmental and Resource Economics, 2 (1992), 161-181.
doi: 10.1007/BF00338241. |
[20] |
V. Kaitala, K. G. Maler and H. Tulkens, The acid rain game as a resource allocation process, with application to negotiations between Finland, Russia and Estonia, in Public Goods, Environmental Externalities and Fiscal Competition, 97, Springer, Boston, MA, 1995, 135–152.
doi: 10.1007/978-0-387-25534-7_9. |
[21] |
T. R. Lakshmanan and F. Lo, A regional economic model for the assessment of effects of air pollution abatement, Environment and Planning, 4 (1972), 73-97. Google Scholar |
[22] |
F. Lera-Lopez, J. Faulin and M. Sanchez,
Determinants of the willingness-to-pay for reducing the environmental impacts of road transportation, Transportation Research Part D Transport and Environment, 17 (2012), 215-220.
doi: 10.1016/j.trd.2011.11.002. |
[23] |
S. Li,
A differential game of transboundary industrial pollution with emission permits trading, J. Optim. Theory Appl., 163 (2014), 642-659.
doi: 10.1007/s10957-013-0384-7. |
[24] |
M. C. Liu, L. Yang, Q. W. Min and Y. Y. Bai,
Eco-compensation standards for agricultural water conservation: A case study of the paddy land-to-dry land program in China, Agricultural Water Management, 204 (2018), 192-197.
doi: 10.1016/j.agwat.2018.04.004. |
[25] |
K. G. Mäler, The acid rain game, in Valuation Methods and Policy Making in Environmental Economics, Elsevier, Amsterdam, 1989, 231–252. Google Scholar |
[26] |
J. R. Markusen,
International externalities and optimal tax structures, J. of International Economics, 5 (1975), 15-29.
doi: 10.1016/0022-1996(75)90025-2. |
[27] |
Y. Nagase and E. C. D. Silva,
Acid rain in China and Japan: A game-theoretic analysis, Regional Science and Urban Economics, 37 (2007), 100-120.
doi: 10.1016/j.regsciurbeco.2006.08.001. |
[28] |
T. Paksoy and E. Ozceylan,
Environmentally conscious optimization of supply chain networks, J. of the Operational Research Society, 65 (2013), 855-872.
doi: 10.1057/jors.2012.95. |
[29] |
T. Paksoy, N. Y. Pehlivan and E. Ozceylan,
Fuzzy multi objective optimization of a green supply chain network with risk management of that includes environmental hazards, Human and Ecological Risk Assessment, 18 (2012), 1120-1151.
doi: 10.1080/10807039.2012.707940. |
[30] |
L. Petrosyan and G. Zaccour,
Time-consistent Shapley value allocation of pollution cost reduction, J. Econom. Dynam. Control, 27 (2003), 381-398.
doi: 10.1016/S0165-1889(01)00053-7. |
[31] |
K. Prager,
Agri-environmental collaboratives for landscape management in Europe, Current Opinion in Environmental Sustainability, 12 (2015), 59-66.
doi: 10.1016/j.cosust.2014.10.009. |
[32] |
K. Prager,
Agri-environmental collaboratives as bridging organisations in landscape management, J. of Environmental Management, 161 (2015), 375-384.
doi: 10.1016/j.jenvman.2015.07.027. |
[33] |
O. Tahvonen, V. Kaitala and M. Pohjola,
A Finnish-Soviet acid rain game: Noncooperative equilibria, cost efficiency, and sulphur agreements, J. of Environmental Economics and Management, 24 (1993), 87-100.
doi: 10.1006/jeem.1993.1006. |
[34] |
H. Tulkens, An economic model of international negotiations relating to transfrontier pollution, in Public Goods, Environmental Externalities and Fiscal Competition, Springer, Boston, MA, 2006, 107–121.
doi: 10.1007/978-0-387-25534-7_7. |
[35] |
P. Usta, S. Ergun and S. Z. Alparslan-Gok, A cooperative game theory approach to post disaster housing problem, in Handbook of Research on Emergent Applications of Optimization Algorithms, IGI Global, USA, 2018, 314–325. Google Scholar |
[36] |
A. A. Vasin,
Game-theoretic study of electricity market mechanisms, Procedia Computer Science, 31 (2014), 124-132.
doi: 10.1016/j.procs.2014.05.252. |
[37] |
A. A. Vasin and A. G. Gusev,
Game-theoretical control models for electric power and capacity market, J. Comput. Syst. Sci. Int., 51 (2012), 792-801.
doi: 10.1134/S1064230712060135. |
[38] |
G. W. Weber, S. Z. Alparslan-Gok and B. Soyler,
A new mathematical approach in environmental and life sciences: gene-environment networks and their dynamics, Environmental Modelling and Assessment, 14 (2009), 267-288.
doi: 10.1007/s10666-007-9137-z. |
[39] |
G. W. Weber, P. Taylan, S. Z. Alparslan-Gok, S. Ozogue and B. Akteke-Ozturk,
Optimization of gene-environment networks in the presence of errors and uncertainty with Chebychev approximation, TOP, 16 (2008), 284-318.
doi: 10.1007/s11750-008-0052-5. |
[40] |
J. Westerink, R. Jongeneel, N. Polman, K. Prager, J. Franks, P. Dupraz and E. Mettepenningen,
Collaborative governance arrangements to deliver spatially coordinated agri-environmental management, Land Use Policy, 69 (2017), 176-192.
doi: 10.1016/j.landusepol.2017.09.002. |
[41] |
D. Yaron and A. Ratner,
Regional cooperation in the use of irrigation water: Efficiency and income distribution, Agricultural Economics, 4 (1990), 45-58.
doi: 10.1016/0169-5150(90)90019-W. |
[42] |
D. W. K. Yeung,
Dynamically consistent cooperative solution in a differential game of transboundary industrial pollution., J. Optim. Theory Appl., 134 (2007), 143-160.
doi: 10.1007/s10957-007-9240-y. |
[43] |
D. W. K. Yeung,
Dynamically consistent solution for a pollution management game in collaborative abatement with uncertain future payoffs, Int. Game Theory Rev., 10 (2008), 517-538.
doi: 10.1142/S0219198908002072. |
[44] |
D. W. K. Yeung,
Dynamically consistent collaborative environmental management with production technique choices, Ann. Oper. Res., 220 (2014), 181-204.
doi: 10.1007/s10479-011-0844-0. |
[45] |
D. W. K. Yeung and L. A. Petrosyan, Subgame consistent solution of a cooperative stochastic differential game with nontransferable payoffs, J. Optim. Theory Appl., 124 (2005), 701-724.
doi: 10.1007/s10957-004-1181-0. |
[46] |
D. W. K. Yeung and L. A. Petrosyan,
Dynamically stable corporate joint ventures, Automatica J., 42 (2006), 365-370.
doi: 10.1016/j.automatica.2005.10.010. |
[47] |
D. W. K. Yeung and L. A. Petrosyan, Cooperative Stochastic Differential Games, Springer Series in Operations Research and Financial Engineering, Springer-Verlag, New York, 2006.
doi: 10.1007/0-387-27622-X. |
[48] |
D. W. K. Yeung and L. A. Petrosyan,
A cooperative stochastic differential game of transboundary industrial pollution, Automatica J., 44 (2008), 1532-1544.
doi: 10.1016/j.automatica.2008.03.005. |
[49] |
D. W. K. Yeung and L. A. Petrosyan, Managing catastrophe-bound industrial pollution with game-theoretic algorithm: The St. Petersburg initiative, Contributions to Game Theory and Management, St Petersburg State University, 2008, 524–538. Google Scholar |
[50] |
D. W. K. Yeung and L. A. Petrosyan,
Subgame consistent solutions for cooperative stochastic dynamic games, J. Optim. Theory Appl., 145 (2010), 579-596.
doi: 10.1007/s10957-010-9702-5. |
[51] |
D. W. K. Yeung and L. A. Petrosyan, Subgame Consistent Economic Optimization: An Advanced Cooperative Dynamic Game Analysis, Static & Dynamic Game Theory: Foundations & Applications, Birkhäuser/Springer, New York, 2012.
doi: 10.1007/978-0-8176-8262-0. |
[52] |
D. W. K. Yeung and Y. X. Zhang, Industrial Pollution Problems in Pearl-River-Delta and Mechanism Design for an Inter-regional Management Regime, The Seventh Annual Conference The Asian Studies Association of Hong Kong (ASAHK), Shue Yan University, HK, 2012. Google Scholar |
[53] |
D. W. K. Yeung, L. A. Petrosyan, Y. X. Zhang and F. Cheung, BEST SCORES Solution to the Catastrophe Bound Environment, Nova Science, New York, 2017. Google Scholar |
[54] |
A. Zaldivar-Jiménez, P. Ladrón-de-Guevara-Porras, R. Perez-Ceballos, S. Diaz-Mondragón and R. Rosado-Solorzano,
US-Mexico joint Gulf of Mexico large marine ecosystem based assessment and management: Experience in community involvement and mangrove wetland restoration in Términos lagoon, Mexico, Environmental Development, 22 (2017), 206-213.
doi: 10.1016/j.envdev.2017.02.007. |
[55] |
Y. X. Zhang, Q. W. Min, Y. Y. Bai and X. D. Li,
Practices of cooperation for eco-environmental conservation (CEC) in China and theoretic framework of CEC: A new perspective, J. of Cleaner Production, 179 (2018), 515-526.
doi: 10.1016/j.jclepro.2018.01.112. |
show all references
References:
[1] |
A. Antoci, P. Russu and E. Ticci,
Environmental externalities and immiserizing structural changes in an economy with heterogeneous agents, Ecological Economics, 81 (2012), 80-91.
doi: 10.1016/j.ecolecon.2012.06.004. |
[2] |
M. Breton, G. Zaccour and M. Zahaf,
A differential game of joint implementation of environmental projects, Automatica J., 41 (2005), 1737-1749.
doi: 10.1016/j.automatica.2005.05.004. |
[3] |
M. Breton, G. Zaccour and M. Zahaf,
A game-theoretic formulation of joint implementation of environmental projects, European J. Oper. Res., 168 (2005), 221-239.
doi: 10.1016/j.ejor.2004.04.026. |
[4] |
A. J. Caplan and E. C. D. Silva,
Federal acid rain games, J. of Urban Economics, 46 (1999), 25-52.
doi: 10.1006/juec.1998.2109. |
[5] |
P. Chander and H. Tulkens,
A core-theoretic solution for the design of cooperative agreements on transfrontier pollution, International Tax and Public Finance, 2 (1995), 279-294.
doi: 10.1007/BF00877502. |
[6] |
P. Chander and H. Tulkens, (1997) The core of an economy with multilateral environmental
externalities, Internat. J. Game Theory, 26 (1997), 379–401.
doi: 10.1007/BF01263279. |
[7] |
B. R. Copeland,
Pollution content tariffs, environmental rent shifting, and the control of cross border pollution, J. of International Economics, 40 (1996), 459-476.
doi: 10.1016/0022-1996(95)01415-2. |
[8] |
P. Courtois and T. Tazdaït,
Bargaining over a climate deal: Deadline and delay, Ann. Oper. Res., 220 (2014), 205-221.
doi: 10.1007/s10479-011-1018-9. |
[9] |
A. Dinar and A. Wolf,
Economic potential and political considerations of regional water trade: The Western Middle East example, Resource and Energy Economics, 16 (1994), 335-356.
doi: 10.1016/0928-7655(94)90025-6. |
[10] |
E. J. Dockner and N. V. Long,
International pollution control: Cooperative versus noncooperative strategies, J. of Environmental Economics and Management, 25 (1993), 13-29.
doi: 10.1006/jeem.1993.1023. |
[11] |
M. Finus, P. Cooper and C. Almer,
The use of international agreements in transnational environmental protection, Oxford Economic Papers, 69 (2017), 333-344.
doi: 10.1093/oep/gpx018. |
[12] |
K. Fredj, G. Martín-Herrán and G. Zaccour,
Slowing deforestation pace through subsidies: A differential game, Automatica J., 40 (2004), 301-309.
doi: 10.1016/j.automatica.2003.10.020. |
[13] |
M. Germaina, H. Tulkens and A. Magnus,
Dynamic core-theoretic cooperation in a two-dimensional international environmental model, Math. Social Sci., 59 (2010), 208-226.
doi: 10.1016/j.mathsocsci.2009.10.003. |
[14] |
L. P. Hildebrand, V. Pebbles and D. A. Fraser,
Cooperative ecosystem management across the Canada–US border: Approaches and experiences of transboundary programs in the Gulf of Maine, Great Lakes and Georgia Basin/Puget Sound, Ocean & Coastal Management, 45 (2002), 421-457.
doi: 10.1016/S0964-5691(02)00078-9. |
[15] |
J. Hu, Research on Local Government Collaboration in Transboundary Environmental Governance, Thesis for Doctor's Degree, Fudan University, Shanghai, China, (2010). Google Scholar |
[16] |
S. Jorgensen and G. Zaccour,
Time consistent side payments in a dynamic game of downstream pollution, J. Econom. Dynam. Control, 25 (2001), 1973-1987.
doi: 10.1016/S0165-1889(00)00013-0. |
[17] |
V. Kaitala, M. Pohjola and O. Tahvonen, Transboundary air pollution between Finland and the USSR - a dynamic acid rain game, in Dynamic Games in Economic Analysis, Lecture Notes in Control and Information Sciences, 157, Springer, 1991, 183–192.
doi: 10.1007/BFb0006240. |
[18] |
V. Kaitala, M. Pohjola and O. Tahvonen, An economic analysis of transboundary air pollution between Finland and the Soviet Union, Scandinavian J. of Economics, 94 (1992), 409-424. Google Scholar |
[19] |
V. Kaitala, M. Pohjola and O. Tahvonen,
Transboundary air pollution and soil acidification: A dynamic analysis of an acid rain game between Finland and the USSR, Environmental and Resource Economics, 2 (1992), 161-181.
doi: 10.1007/BF00338241. |
[20] |
V. Kaitala, K. G. Maler and H. Tulkens, The acid rain game as a resource allocation process, with application to negotiations between Finland, Russia and Estonia, in Public Goods, Environmental Externalities and Fiscal Competition, 97, Springer, Boston, MA, 1995, 135–152.
doi: 10.1007/978-0-387-25534-7_9. |
[21] |
T. R. Lakshmanan and F. Lo, A regional economic model for the assessment of effects of air pollution abatement, Environment and Planning, 4 (1972), 73-97. Google Scholar |
[22] |
F. Lera-Lopez, J. Faulin and M. Sanchez,
Determinants of the willingness-to-pay for reducing the environmental impacts of road transportation, Transportation Research Part D Transport and Environment, 17 (2012), 215-220.
doi: 10.1016/j.trd.2011.11.002. |
[23] |
S. Li,
A differential game of transboundary industrial pollution with emission permits trading, J. Optim. Theory Appl., 163 (2014), 642-659.
doi: 10.1007/s10957-013-0384-7. |
[24] |
M. C. Liu, L. Yang, Q. W. Min and Y. Y. Bai,
Eco-compensation standards for agricultural water conservation: A case study of the paddy land-to-dry land program in China, Agricultural Water Management, 204 (2018), 192-197.
doi: 10.1016/j.agwat.2018.04.004. |
[25] |
K. G. Mäler, The acid rain game, in Valuation Methods and Policy Making in Environmental Economics, Elsevier, Amsterdam, 1989, 231–252. Google Scholar |
[26] |
J. R. Markusen,
International externalities and optimal tax structures, J. of International Economics, 5 (1975), 15-29.
doi: 10.1016/0022-1996(75)90025-2. |
[27] |
Y. Nagase and E. C. D. Silva,
Acid rain in China and Japan: A game-theoretic analysis, Regional Science and Urban Economics, 37 (2007), 100-120.
doi: 10.1016/j.regsciurbeco.2006.08.001. |
[28] |
T. Paksoy and E. Ozceylan,
Environmentally conscious optimization of supply chain networks, J. of the Operational Research Society, 65 (2013), 855-872.
doi: 10.1057/jors.2012.95. |
[29] |
T. Paksoy, N. Y. Pehlivan and E. Ozceylan,
Fuzzy multi objective optimization of a green supply chain network with risk management of that includes environmental hazards, Human and Ecological Risk Assessment, 18 (2012), 1120-1151.
doi: 10.1080/10807039.2012.707940. |
[30] |
L. Petrosyan and G. Zaccour,
Time-consistent Shapley value allocation of pollution cost reduction, J. Econom. Dynam. Control, 27 (2003), 381-398.
doi: 10.1016/S0165-1889(01)00053-7. |
[31] |
K. Prager,
Agri-environmental collaboratives for landscape management in Europe, Current Opinion in Environmental Sustainability, 12 (2015), 59-66.
doi: 10.1016/j.cosust.2014.10.009. |
[32] |
K. Prager,
Agri-environmental collaboratives as bridging organisations in landscape management, J. of Environmental Management, 161 (2015), 375-384.
doi: 10.1016/j.jenvman.2015.07.027. |
[33] |
O. Tahvonen, V. Kaitala and M. Pohjola,
A Finnish-Soviet acid rain game: Noncooperative equilibria, cost efficiency, and sulphur agreements, J. of Environmental Economics and Management, 24 (1993), 87-100.
doi: 10.1006/jeem.1993.1006. |
[34] |
H. Tulkens, An economic model of international negotiations relating to transfrontier pollution, in Public Goods, Environmental Externalities and Fiscal Competition, Springer, Boston, MA, 2006, 107–121.
doi: 10.1007/978-0-387-25534-7_7. |
[35] |
P. Usta, S. Ergun and S. Z. Alparslan-Gok, A cooperative game theory approach to post disaster housing problem, in Handbook of Research on Emergent Applications of Optimization Algorithms, IGI Global, USA, 2018, 314–325. Google Scholar |
[36] |
A. A. Vasin,
Game-theoretic study of electricity market mechanisms, Procedia Computer Science, 31 (2014), 124-132.
doi: 10.1016/j.procs.2014.05.252. |
[37] |
A. A. Vasin and A. G. Gusev,
Game-theoretical control models for electric power and capacity market, J. Comput. Syst. Sci. Int., 51 (2012), 792-801.
doi: 10.1134/S1064230712060135. |
[38] |
G. W. Weber, S. Z. Alparslan-Gok and B. Soyler,
A new mathematical approach in environmental and life sciences: gene-environment networks and their dynamics, Environmental Modelling and Assessment, 14 (2009), 267-288.
doi: 10.1007/s10666-007-9137-z. |
[39] |
G. W. Weber, P. Taylan, S. Z. Alparslan-Gok, S. Ozogue and B. Akteke-Ozturk,
Optimization of gene-environment networks in the presence of errors and uncertainty with Chebychev approximation, TOP, 16 (2008), 284-318.
doi: 10.1007/s11750-008-0052-5. |
[40] |
J. Westerink, R. Jongeneel, N. Polman, K. Prager, J. Franks, P. Dupraz and E. Mettepenningen,
Collaborative governance arrangements to deliver spatially coordinated agri-environmental management, Land Use Policy, 69 (2017), 176-192.
doi: 10.1016/j.landusepol.2017.09.002. |
[41] |
D. Yaron and A. Ratner,
Regional cooperation in the use of irrigation water: Efficiency and income distribution, Agricultural Economics, 4 (1990), 45-58.
doi: 10.1016/0169-5150(90)90019-W. |
[42] |
D. W. K. Yeung,
Dynamically consistent cooperative solution in a differential game of transboundary industrial pollution., J. Optim. Theory Appl., 134 (2007), 143-160.
doi: 10.1007/s10957-007-9240-y. |
[43] |
D. W. K. Yeung,
Dynamically consistent solution for a pollution management game in collaborative abatement with uncertain future payoffs, Int. Game Theory Rev., 10 (2008), 517-538.
doi: 10.1142/S0219198908002072. |
[44] |
D. W. K. Yeung,
Dynamically consistent collaborative environmental management with production technique choices, Ann. Oper. Res., 220 (2014), 181-204.
doi: 10.1007/s10479-011-0844-0. |
[45] |
D. W. K. Yeung and L. A. Petrosyan, Subgame consistent solution of a cooperative stochastic differential game with nontransferable payoffs, J. Optim. Theory Appl., 124 (2005), 701-724.
doi: 10.1007/s10957-004-1181-0. |
[46] |
D. W. K. Yeung and L. A. Petrosyan,
Dynamically stable corporate joint ventures, Automatica J., 42 (2006), 365-370.
doi: 10.1016/j.automatica.2005.10.010. |
[47] |
D. W. K. Yeung and L. A. Petrosyan, Cooperative Stochastic Differential Games, Springer Series in Operations Research and Financial Engineering, Springer-Verlag, New York, 2006.
doi: 10.1007/0-387-27622-X. |
[48] |
D. W. K. Yeung and L. A. Petrosyan,
A cooperative stochastic differential game of transboundary industrial pollution, Automatica J., 44 (2008), 1532-1544.
doi: 10.1016/j.automatica.2008.03.005. |
[49] |
D. W. K. Yeung and L. A. Petrosyan, Managing catastrophe-bound industrial pollution with game-theoretic algorithm: The St. Petersburg initiative, Contributions to Game Theory and Management, St Petersburg State University, 2008, 524–538. Google Scholar |
[50] |
D. W. K. Yeung and L. A. Petrosyan,
Subgame consistent solutions for cooperative stochastic dynamic games, J. Optim. Theory Appl., 145 (2010), 579-596.
doi: 10.1007/s10957-010-9702-5. |
[51] |
D. W. K. Yeung and L. A. Petrosyan, Subgame Consistent Economic Optimization: An Advanced Cooperative Dynamic Game Analysis, Static & Dynamic Game Theory: Foundations & Applications, Birkhäuser/Springer, New York, 2012.
doi: 10.1007/978-0-8176-8262-0. |
[52] |
D. W. K. Yeung and Y. X. Zhang, Industrial Pollution Problems in Pearl-River-Delta and Mechanism Design for an Inter-regional Management Regime, The Seventh Annual Conference The Asian Studies Association of Hong Kong (ASAHK), Shue Yan University, HK, 2012. Google Scholar |
[53] |
D. W. K. Yeung, L. A. Petrosyan, Y. X. Zhang and F. Cheung, BEST SCORES Solution to the Catastrophe Bound Environment, Nova Science, New York, 2017. Google Scholar |
[54] |
A. Zaldivar-Jiménez, P. Ladrón-de-Guevara-Porras, R. Perez-Ceballos, S. Diaz-Mondragón and R. Rosado-Solorzano,
US-Mexico joint Gulf of Mexico large marine ecosystem based assessment and management: Experience in community involvement and mangrove wetland restoration in Términos lagoon, Mexico, Environmental Development, 22 (2017), 206-213.
doi: 10.1016/j.envdev.2017.02.007. |
[55] |
Y. X. Zhang, Q. W. Min, Y. Y. Bai and X. D. Li,
Practices of cooperation for eco-environmental conservation (CEC) in China and theoretic framework of CEC: A new perspective, J. of Cleaner Production, 179 (2018), 515-526.
doi: 10.1016/j.jclepro.2018.01.112. |
[1] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[2] |
Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021015 |
[3] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[4] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[5] |
Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020158 |
[6] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[7] |
Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020055 |
[8] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[9] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021011 |
[10] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[11] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[12] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[13] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[14] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[15] |
Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038 |
[16] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[17] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[18] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[19] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[20] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
2019 Impact Factor: 1.366
Tools
Article outline
[Back to Top]