• Previous Article
    A dual-channel supply chain problem with resource-utilization penalty: Who can benefit from sales effort?
  • JIMO Home
  • This Issue
  • Next Article
    Robust stochastic optimization with convex risk measures: A discretized subgradient scheme
doi: 10.3934/jimo.2019124

Analysis of Markov-modulated fluid polling systems with gated discipline

1. 

Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Wien, Austria

2. 

MTA-BME Information Systems Research Group, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary

3. 

Department of Networked Systems and Services, Budapest University of Technology and Economics, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary

* Corresponding author

Received  October 2018 Revised  March 2019 Published  October 2019

In this paper we present two different analytical descriptions of the fluid polling model with Markov modulated load and gated discipline. The fluid arrival to the stations is modulated by a common continuous-time Markov chain (the special case when the modulating Markov chains are independent is also included). The fluid is removed at the stations during the service period by a station dependent constant rate.

The first analytical description is based on the relationships of steady-state fluid levels at embedded server arrival and departure epochs. We derive the steady-state vector Laplace transform of the fluid levels at the stations at arbitrary epoch and its moments. The second analytical description applies the method of supplementary variables and results in differential equations, from which the joint density function of the fluid levels can be obtained.

We also propose computational methods for both analytical descriptions and provide numerical examples to illustrate the numeric computations.

Citation: Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019124
References:
[1]

S. Ahn and V. Ramaswami, Efficient algorithms for transient analysis of stochastic fluid flow models, J. Appl. Probab., 42 (2005), 531-549.  doi: 10.1239/jap/1118777186.  Google Scholar

[2]

N. G. Bean and M. M. O'Reilly, A stochastic two-dimensional fluid model, Stoch. Models, 29 (2013), 31-63.  doi: 10.1080/15326349.2013.750532.  Google Scholar

[3]

O. BoxmaJ. IvanovsK. Kosiński and M. Mandjes, Lévy-driven polling systems and continuous-state branching processes, Stoch. Syst., 1 (2011), 411-436.  doi: 10.1287/10-SSY008.  Google Scholar

[4]

O. Czerniak and U. Yechiali, Fluid polling systems, Queueing Syst., 63 (2009), 401-435.  doi: 10.1007/s11134-009-9129-6.  Google Scholar

[5]

J. G. Dai, On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models, Ann. Appl. Probab., 5 (1995), 49-77.  doi: 10.1214/aoap/1177004828.  Google Scholar

[6]

J. G. Dai and S. P. Meyn, Stability and convergence of moments for multiclass queueing networks via fluid limit models, IEEE Trans. Automat. Control, 40 (1995), 1889-1904.  doi: 10.1109/9.471210.  Google Scholar

[7]

M. Eisenberg, Queues with periodic service and changeover time, Oper. Res., 20 (1972), 440-451.  doi: 10.1287/opre.20.2.440.  Google Scholar

[8]

I. Eliazar, Gated polling systems with Lévy inflow and inter-dependent switchover times: A dynamical-systems approach, Queueing Syst., 49 (2005), 49-72.  doi: 10.1007/s11134-004-5555-7.  Google Scholar

[9]

G. Horváth and M. Telek, Exhaustive fluid vacation model with positive fluid rate during service, Performance Evaluation, 91 (2015), 286 – 302. doi: 10.1016/j.peva.2015.06.017.  Google Scholar

[10]

V. G. Kulkarni, Fluid models for single buffer systems, in Frontiers in Queueing, Probab. Stochastics Ser., CRC Press, Inc., Boca Raton, FL, 1997, 321–338. doi: doi.  Google Scholar

[11]

Z. Saffer, G. Horváth, and M. Telek, Fluid polling system with Markov modulated load and gated discipline, in 13th International Conference on Queueing Theory and Network Applications (QTNA2018), Lecture Notes in Computer Science, 10932, Springer, 2018, 86 – 102. doi: 10.1007/978-3-319-93736-6_6.  Google Scholar

[12]

Z. Saffer and M. Telek, Fluid vacation model with Markov modulated load and exhaustive discipline, in Computer Performance Engineering, EPEW, Lecture Notes in Computer Science, 8721, Springer, 2014, 59–73. doi: 10.1007/978-3-319-10885-8_5.  Google Scholar

[13]

Z. Saffer and M. Telek, Fluid vacation model with Markov modulated load and gated discipline, in 9th International Conference on Queueing Theory and Network Applications (QTNA), 2014, 184–197. doi: 10.3934/jimo.2012.8.939.  Google Scholar

[14]

Z. Saffer and M. Telek, Exhaustive fluid vacation model with Markov modulated load, Performance Evaluation, 98 (2016), 19 – 35. doi: 10.1016/j.peva.2016.01.004.  Google Scholar

[15]

H. Takagi, Analysis of Polling Systems, Performance Evaluation, 5 (1985), 206. doi: 10.1016/0166-5316(85)90016-1.  Google Scholar

[16]

H. Takagi, Queuing analysis of polling models, ACM Comput. Surveys, 20 (1988), 5-28.  doi: 10.1145/62058.62059.  Google Scholar

[17]

H. Takagi, Analysis and application of polling models, in Performance Evaluation: Origins and Directions, Lecture Notes in Computer Science, 1769, Springer, Berlin, Heidelberg, 2000, 423–442. doi: 10.1007/3-540-46506-5_18.  Google Scholar

show all references

References:
[1]

S. Ahn and V. Ramaswami, Efficient algorithms for transient analysis of stochastic fluid flow models, J. Appl. Probab., 42 (2005), 531-549.  doi: 10.1239/jap/1118777186.  Google Scholar

[2]

N. G. Bean and M. M. O'Reilly, A stochastic two-dimensional fluid model, Stoch. Models, 29 (2013), 31-63.  doi: 10.1080/15326349.2013.750532.  Google Scholar

[3]

O. BoxmaJ. IvanovsK. Kosiński and M. Mandjes, Lévy-driven polling systems and continuous-state branching processes, Stoch. Syst., 1 (2011), 411-436.  doi: 10.1287/10-SSY008.  Google Scholar

[4]

O. Czerniak and U. Yechiali, Fluid polling systems, Queueing Syst., 63 (2009), 401-435.  doi: 10.1007/s11134-009-9129-6.  Google Scholar

[5]

J. G. Dai, On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models, Ann. Appl. Probab., 5 (1995), 49-77.  doi: 10.1214/aoap/1177004828.  Google Scholar

[6]

J. G. Dai and S. P. Meyn, Stability and convergence of moments for multiclass queueing networks via fluid limit models, IEEE Trans. Automat. Control, 40 (1995), 1889-1904.  doi: 10.1109/9.471210.  Google Scholar

[7]

M. Eisenberg, Queues with periodic service and changeover time, Oper. Res., 20 (1972), 440-451.  doi: 10.1287/opre.20.2.440.  Google Scholar

[8]

I. Eliazar, Gated polling systems with Lévy inflow and inter-dependent switchover times: A dynamical-systems approach, Queueing Syst., 49 (2005), 49-72.  doi: 10.1007/s11134-004-5555-7.  Google Scholar

[9]

G. Horváth and M. Telek, Exhaustive fluid vacation model with positive fluid rate during service, Performance Evaluation, 91 (2015), 286 – 302. doi: 10.1016/j.peva.2015.06.017.  Google Scholar

[10]

V. G. Kulkarni, Fluid models for single buffer systems, in Frontiers in Queueing, Probab. Stochastics Ser., CRC Press, Inc., Boca Raton, FL, 1997, 321–338. doi: doi.  Google Scholar

[11]

Z. Saffer, G. Horváth, and M. Telek, Fluid polling system with Markov modulated load and gated discipline, in 13th International Conference on Queueing Theory and Network Applications (QTNA2018), Lecture Notes in Computer Science, 10932, Springer, 2018, 86 – 102. doi: 10.1007/978-3-319-93736-6_6.  Google Scholar

[12]

Z. Saffer and M. Telek, Fluid vacation model with Markov modulated load and exhaustive discipline, in Computer Performance Engineering, EPEW, Lecture Notes in Computer Science, 8721, Springer, 2014, 59–73. doi: 10.1007/978-3-319-10885-8_5.  Google Scholar

[13]

Z. Saffer and M. Telek, Fluid vacation model with Markov modulated load and gated discipline, in 9th International Conference on Queueing Theory and Network Applications (QTNA), 2014, 184–197. doi: 10.3934/jimo.2012.8.939.  Google Scholar

[14]

Z. Saffer and M. Telek, Exhaustive fluid vacation model with Markov modulated load, Performance Evaluation, 98 (2016), 19 – 35. doi: 10.1016/j.peva.2016.01.004.  Google Scholar

[15]

H. Takagi, Analysis of Polling Systems, Performance Evaluation, 5 (1985), 206. doi: 10.1016/0166-5316(85)90016-1.  Google Scholar

[16]

H. Takagi, Queuing analysis of polling models, ACM Comput. Surveys, 20 (1988), 5-28.  doi: 10.1145/62058.62059.  Google Scholar

[17]

H. Takagi, Analysis and application of polling models, in Performance Evaluation: Origins and Directions, Lecture Notes in Computer Science, 1769, Springer, Berlin, Heidelberg, 2000, 423–442. doi: 10.1007/3-540-46506-5_18.  Google Scholar

Figure 1.  The joint distribution of the fluid level and the one-dimensional marginals
Figure 2.  The joint distribution of the fluid level at polling and at departure epochs
Table 1.  Steady-state vector moments of the fluid levels at polling epochs
1st moment 1st moment 2nd moment 2nd moment
element 0 element 1 element 0 element 1
Station 1: 1.0614 0.7386 2.1640 1.7821
Station 2: 2.1759 0.7170 8.3775 2.2387
1st moment 1st moment 2nd moment 2nd moment
element 0 element 1 element 0 element 1
Station 1: 1.0614 0.7386 2.1640 1.7821
Station 2: 2.1759 0.7170 8.3775 2.2387
Table 2.  Mean fluid levels of the queue in different phases of the server
St. 1. busy St. 1. vacation St. 2. busy St. 2. vacation
Station 1: 7.559 5.827 7.861 9.418
Station 2: 3.915 5.932 4.362 2.194
St. 1. busy St. 1. vacation St. 2. busy St. 2. vacation
Station 1: 7.559 5.827 7.861 9.418
Station 2: 3.915 5.932 4.362 2.194
[1]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[2]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[3]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[4]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[5]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[6]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[7]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[10]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[11]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[12]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[13]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[14]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[15]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[16]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[17]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[18]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (54)
  • HTML views (406)
  • Cited by (0)

Other articles
by authors

[Back to Top]