March  2021, 17(2): 633-648. doi: 10.3934/jimo.2019126

Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items

1. 

School of Management, Tianjin Normal University, Tianjin 300387, China

2. 

Business School, Hunan University, Changsha, Hunan 410082, China

* Corresponding author: Guowei Zhu

Received  November 2018 Revised  July 2019 Published  March 2021 Early access  October 2019

Fund Project: The first author is supported by the Tianjin Philosophy and Social Sciences Planning Year Project grant TJGLQN17-010; The second author is supported by National Natural Science Foundation of China grant 71871089

This paper studies a dynamic pricing and replenishment problem for perishable items considering the behavior of decision-maker (partially myopic or forward-looking) and the dynamic effects of cumulative sales. A dynamic optimization model is presented to maximize the total profit per unit time and solved on the basis of Pontryagin's maximum principle. The optimal pricing and replenishment strategies for partially myopic and forward-looking scenarios are obtained. By comparing the partially myopic and forward-looking strategies through numerical analysis, we find the main results: First, applying a skimming pricing strategy might be a good choice when the saturation effects are considered. Second, the decreasing rate of product sales, deterioration coefficient, and holding cost of perishable items per unit exhibit impact on the behavioral preference of decision-maker. Under certain conditions, partially myopic behavior can bring more profit than forward-looking behavior. These managerial implications provide useful guidelines for the decision-maker.

Citation: Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial and Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126
References:
[1]

N. AmroucheG. Martín-Herrán and G. Zaccour, Feedback Stackelberg equilibrium strategies when the private label competes with the national brand, Appl. Math. Model., 164 (2008), 79-95.  doi: 10.1007/s10479-008-0320-7.

[2]

M. BakkerJ. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001, European J. Oper. Res., 221 (2012), 275-284.  doi: 10.1016/j.ejor.2012.03.004.

[3]

F. M. Bass and A. V. Bultez, A note on optimal strategic pricing of technological innovations, Marketing Science, 1 (1982), 371-378.  doi: 10.1287/mksc.1.4.371.

[4]

H. BenchekrounG. Martín-Herrán and S. Taboubi, Could myopic pricing be a strategic choice in marketing channels? A game theoretic analysis, J. Econom. Dynam. Control, 33 (2009), 1699-1718.  doi: 10.1016/j.jedc.2009.03.005.

[5]

G. Bitran and R. Caldentey, An overview of pricing models for revenue management, Manufacturing & Service Oper. Manag., 5 (2003), 203-229.  doi: 10.1287/msom.5.3.203.16031.

[6]

X. Q. CaiY. FengY. J. Li and D. Shi, Optimal pricing policy for a deteriorating product by dynamic tracking control, Internat. J. Prod. Res., 51 (2013), 2491-2504.  doi: 10.1080/00207543.2012.743688.

[7]

D. ChakravartiA. Mitchell and R. Staelin, Judgment based marketing decision models: An experimental investigation of the decision calculus approach, Management Science, 25 (1979), 251-263.  doi: 10.1287/mnsc.25.3.251.

[8]

H. CheK. Sudhir and P. B. Seetharaman, Bounded rationality in pricing under state-dependent demand: Do firms look ahead, and if so, how far?, J. of Marketing Research, 44 (2007), 434-449.  doi: 10.1509/jmkr.44.3.434.

[9]

W. Y. K. Chiang, Supply chain dynamics and channel efficiency in durable product pricing and distribution, Manufacturing & Service Oper. Manag., 14 (2012), 327-343.  doi: 10.1287/msom.1110.0370.

[10]

C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging, Omega - Internat. J. Manag. Science, 35 (2007), 184-189.  doi: 10.1016/j.omega.2005.05.002.

[11]

L. Feng, Dynamic pricing, quality investment, and replenishment model for perishable items, Int. Trans. Oper. Res., 26 (2019), 1558-1575.  doi: 10.1111/itor.12505.

[12]

M. Ferguson and M. E. Ketzenberg, Information sharing to improve retail product freshness of perishables, Prod. and Oper. Manag., 15 (2006), 57-73. 

[13]

G. FibichA. Gavious and O. Lowengart, Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects, Oper. Res., 51 (2003), 721-734.  doi: 10.1287/opre.51.5.721.16758.

[14]

S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, European J. Oper. Res., 134 (2001), 1-16.  doi: 10.1016/S0377-2217(00)00248-4.

[15]

G. J. Gutierrez and X. L. He, Life-cycle channel coordination issues in launching an innovative durable product, Prod. and Oper. Manag., 20 (2011), 268-279.  doi: 10.1111/j.1937-5956.2010.01197.x.

[16]

J. R. HauserD. I. Simester and B. Wernerfelt, Customer satisfaction incentives, Marketing Science, 13 (1994), 327-350.  doi: 10.1287/mksc.13.4.327.

[17]

S. JørgensenS. Taboubi and G. Zaccour, Retail promotions with negative brand image effects: Is cooperation possible?, European J. Oper. Res., 150 (2003), 395-405.  doi: 10.1016/S0377-2217(02)00641-0.

[18]

S. Jørgensen and G. Zaccour, Differential Games in Marketing, International Series in Quantitative Marketing, Kluwer Academic Publishers, Boston, 2004.

[19]

M. I. Kamien and N. L. Schwartz, Dynamic Optimization: The calculus of variations and optimal control in economics and management, Advanced Textbooks in Economics, North-Holland Publishing Co, Amsterdam, 1991.

[20]

S. Kumar and S. P. Sethi, Dynamic pricing and advertising for web content providers, European J. Oper. Res., 197 (2009), 924-944.  doi: 10.1016/j.ejor.2007.12.038.

[21]

S. T. Law and H. M. Wee, An integrated production-inventory model for ameliorating and deteriorating items taking account of time discounting, Math. and Comput. Modelling, 43 (2006), 673-685.  doi: 10.1016/j.mcm.2005.12.012.

[22]

Y. LevinJ. Mcgill and M. Nediak, Optimal dynamic pricing of perishable items by a monopolist facing strategic consumers, Prod. and Oper. Manag., 19 (2010), 40-60.  doi: 10.1111/j.1937-5956.2009.01046.x.

[23]

G. W. LiuS. P. Sethi and J. X. Zhang, Myopic vs. far-sighted behaviours in a revenue-sharing supply chain with reference quality effects, Internat. J. Prod. Res., 54 (2016), 1334-1357.  doi: 10.1080/00207543.2015.1068962.

[24]

F. X. LuG. W. LiuJ. X. Zhang and W. S. Tang, Benefits of partial myopia in a durable product supply chain considering pricing and advertising, J. Oper. Res. Society, 67 (2016), 1309-1324.  doi: 10.1057/jors.2016.27.

[25]

P. MahataA. Gupta and G. C. Mahata, Optimal pricing and ordering policy for an EPQ inventory system with perishable items under partial tradecredit financing, Internat. J. Oper. Res., 21 (2015), 221-251.  doi: 10.1504/IJOR.2014.064607.

[26]

R. Maihami and B. Karimi, Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts, Comput. Oper. Res., 51 (2014), 302-312.  doi: 10.1016/j.cor.2014.05.022.

[27]

G. Martín-Herrán and S. Taboubi, Shelf-space allocation and advertising decisions in the marketing channel: A differential game approach, Int. Game Theory Rev., 7 (2005), 313-330.  doi: 10.1142/S0219198905000545.

[28]

G. Martín-HerránS. Taboubi and G. Zaccour, Dual role of price and myopia in a marketing channel, European J. Oper. Res., 219 (2012), 284-295.  doi: 10.1016/j.ejor.2011.12.015.

[29]

R. J. Meyer and J. W. Hutchinson, Bumbling geniuses: The power of everyday reasoning in multistage decision making, Wharton on Making Decisions, 2001, 37–61.

[30]

F. Ngendakuriyo and S. Taboubi, Pricing strategies of complementary products in distribution channels: A dynamic approach, Dyn. Games Appl., 7 (2017), 48-66.  doi: 10.1007/s13235-016-0181-7.

[31]

L. Y. OuyangK. S. WuC. T. Yang and H. F. Yen, Optimal order policy in response to announced price increase for deteriorating items with limited special order quantity, Internat. J. Systems Sci., 47 (2016), 718-729.  doi: 10.1080/00207721.2014.902157.

[32]

Z. Pang, Optimal dynamic pricing and inventory control with stock deterioration and partial backordering, Oper. Res. Lett., 39 (2011), 375-379.  doi: 10.1016/j.orl.2011.06.009.

[33]

M. PervinG. C. Mahata and S. K. Roy, An inventory model with demand declining market for deteriorating items under trade credit policy, Internat. J. Manag. Sci. and Engineering Manag., 11 (2016), 243-251.  doi: 10.1080/17509653.2015.1081082.

[34]

M. PervinS. K. Roy and G. W. Weber, Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Ann. Oper. Res., 260 (2018), 437-460.  doi: 10.1007/s10479-016-2355-5.

[35]

M. Pervin, S. K. Roy and G. W. Weber, Deteriorating inventory with preservation technology under price- and stock-sensitive demand, J. Ind. Manag. Optim., (2019). doi: 10.3934/jimo.2019019.

[36]

M. PervinS. K. Roy and G. W. Weber, An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numer. Algebra Control Optim., 8 (2018), 169-191.  doi: 10.3934/naco.2018010.

[37]

M. PervinS. K. Roy and G. W. Weber, Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy, J. Ind. Manag. Optim., 15 (2019), 1345-1373.  doi: 10.3934/jimo.2018098.

[38]

M. PervinS. K. Roy and G. W. Weber, A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numer. Algebra Control Optim., 7 (2017), 21-50.  doi: 10.3934/naco.2017002.

[39]

I. Popescu and Y. Wu, Dynamic pricing strategies with reference effects, Oper. Res., 55 (2007), 413-429.  doi: 10.1287/opre.1070.0393.

[40]

Y. QinJ. Wang and C. Wei, Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously, Internat. J. Produc. Econ., 152 (2014), 42-48.  doi: 10.1016/j.ijpe.2014.01.005.

[41]

M. RabbaniN. P. Zia and H. Rafiei, Joint optimal dynamic pricing and replenishment policies for items with simultaneous quality and physical quantity deterioration, Appl. Math. Comput., 287 (2016), 149-160.  doi: 10.1016/j.amc.2016.04.016.

[42]

R. C. Rao and F. M. Bass, Competition, strategy, and price dynamics: A theoretical and empirical investigation, J. Marketing Res., 22 (1985), 283-297.  doi: 10.1177/002224378502200304.

[43]

S. SahaI. Nielsenb and I. Moon, Optimal retailer investments in green operations and preservation technology for deteriorating items, J. Cleaner Produc., 140 (2017), 1514-1527.  doi: 10.1016/j.jclepro.2016.09.229.

[44]

N. H. ShahH. N. Soni and K. Patel, Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates, Omega - Int. J. Manag. Science, 41 (2013), 421-430.  doi: 10.1016/j.omega.2012.03.002.

[45]

Y. C. Tsao and G. J. Sheen, Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments, Comput. Oper. Res., 35 (2008), 3562-3580.  doi: 10.1016/j.cor.2007.01.024.

[46]

H. M. Wee, Joint pricing and replenishment policy for deteriorating inventory with declining market, Internat. J. Produc. Econ., 40 (1995), 163-171.  doi: 10.1016/0925-5273(95)00053-3.

[47]

H. M. Wee and S. T. Law, Replenishment and pricing policy for deteriorating items taking into account the time-value of money., Internat. J. Produc. Econ., 71 (2001), 213-220.  doi: 10.1016/S0925-5273(00)00121-3.

[48]

H. M. WeeS. T. LoJ. Yu and H. C. Chen, An inventory model for ameliorating and deteriorating items taking account of time value of money and finite planning horizon, Internat. J. Systems Sci., 39 (2008), 801-807.  doi: 10.1080/00207720801902523.

[49]

M. S. XueW. S. Tang and J. X. Zhang, Optimal dynamic pricing for deteriorating items with reference-price effects, Internat. J. Systems Sci., 47 (2016), 2022-2031.  doi: 10.1080/00207721.2014.970598.

[50]

M. S. XueJ. X. ZhangW. S. Tang and R. Dai, Quality improvement and pricing with reference quality effect, J. Systems Sci. Systems Engineering, 26 (2017), 665-682.  doi: 10.1007/s11518-017-5331-y.

[51]

J. X. ZhangQ. WeiQ. Zhang and W. S. Tang, Pricing, service and preservation technology investments policy for deteriorating items under common resource constraints, Computers & Industrial Engineering, 95 (2016), 1-9.  doi: 10.1016/j.cie.2016.02.014.

[52]

W. Zhao and Y. S. Zheng, Optimal dynamic pricing for perishable assets with nonhomogeneous demand, Management Science, 46 (2000), 375-388.  doi: 10.1287/mnsc.46.3.375.12063.

show all references

References:
[1]

N. AmroucheG. Martín-Herrán and G. Zaccour, Feedback Stackelberg equilibrium strategies when the private label competes with the national brand, Appl. Math. Model., 164 (2008), 79-95.  doi: 10.1007/s10479-008-0320-7.

[2]

M. BakkerJ. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001, European J. Oper. Res., 221 (2012), 275-284.  doi: 10.1016/j.ejor.2012.03.004.

[3]

F. M. Bass and A. V. Bultez, A note on optimal strategic pricing of technological innovations, Marketing Science, 1 (1982), 371-378.  doi: 10.1287/mksc.1.4.371.

[4]

H. BenchekrounG. Martín-Herrán and S. Taboubi, Could myopic pricing be a strategic choice in marketing channels? A game theoretic analysis, J. Econom. Dynam. Control, 33 (2009), 1699-1718.  doi: 10.1016/j.jedc.2009.03.005.

[5]

G. Bitran and R. Caldentey, An overview of pricing models for revenue management, Manufacturing & Service Oper. Manag., 5 (2003), 203-229.  doi: 10.1287/msom.5.3.203.16031.

[6]

X. Q. CaiY. FengY. J. Li and D. Shi, Optimal pricing policy for a deteriorating product by dynamic tracking control, Internat. J. Prod. Res., 51 (2013), 2491-2504.  doi: 10.1080/00207543.2012.743688.

[7]

D. ChakravartiA. Mitchell and R. Staelin, Judgment based marketing decision models: An experimental investigation of the decision calculus approach, Management Science, 25 (1979), 251-263.  doi: 10.1287/mnsc.25.3.251.

[8]

H. CheK. Sudhir and P. B. Seetharaman, Bounded rationality in pricing under state-dependent demand: Do firms look ahead, and if so, how far?, J. of Marketing Research, 44 (2007), 434-449.  doi: 10.1509/jmkr.44.3.434.

[9]

W. Y. K. Chiang, Supply chain dynamics and channel efficiency in durable product pricing and distribution, Manufacturing & Service Oper. Manag., 14 (2012), 327-343.  doi: 10.1287/msom.1110.0370.

[10]

C. Y. Dye, Joint pricing and ordering policy for a deteriorating inventory with partial backlogging, Omega - Internat. J. Manag. Science, 35 (2007), 184-189.  doi: 10.1016/j.omega.2005.05.002.

[11]

L. Feng, Dynamic pricing, quality investment, and replenishment model for perishable items, Int. Trans. Oper. Res., 26 (2019), 1558-1575.  doi: 10.1111/itor.12505.

[12]

M. Ferguson and M. E. Ketzenberg, Information sharing to improve retail product freshness of perishables, Prod. and Oper. Manag., 15 (2006), 57-73. 

[13]

G. FibichA. Gavious and O. Lowengart, Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects, Oper. Res., 51 (2003), 721-734.  doi: 10.1287/opre.51.5.721.16758.

[14]

S. K. Goyal and B. C. Giri, Recent trends in modeling of deteriorating inventory, European J. Oper. Res., 134 (2001), 1-16.  doi: 10.1016/S0377-2217(00)00248-4.

[15]

G. J. Gutierrez and X. L. He, Life-cycle channel coordination issues in launching an innovative durable product, Prod. and Oper. Manag., 20 (2011), 268-279.  doi: 10.1111/j.1937-5956.2010.01197.x.

[16]

J. R. HauserD. I. Simester and B. Wernerfelt, Customer satisfaction incentives, Marketing Science, 13 (1994), 327-350.  doi: 10.1287/mksc.13.4.327.

[17]

S. JørgensenS. Taboubi and G. Zaccour, Retail promotions with negative brand image effects: Is cooperation possible?, European J. Oper. Res., 150 (2003), 395-405.  doi: 10.1016/S0377-2217(02)00641-0.

[18]

S. Jørgensen and G. Zaccour, Differential Games in Marketing, International Series in Quantitative Marketing, Kluwer Academic Publishers, Boston, 2004.

[19]

M. I. Kamien and N. L. Schwartz, Dynamic Optimization: The calculus of variations and optimal control in economics and management, Advanced Textbooks in Economics, North-Holland Publishing Co, Amsterdam, 1991.

[20]

S. Kumar and S. P. Sethi, Dynamic pricing and advertising for web content providers, European J. Oper. Res., 197 (2009), 924-944.  doi: 10.1016/j.ejor.2007.12.038.

[21]

S. T. Law and H. M. Wee, An integrated production-inventory model for ameliorating and deteriorating items taking account of time discounting, Math. and Comput. Modelling, 43 (2006), 673-685.  doi: 10.1016/j.mcm.2005.12.012.

[22]

Y. LevinJ. Mcgill and M. Nediak, Optimal dynamic pricing of perishable items by a monopolist facing strategic consumers, Prod. and Oper. Manag., 19 (2010), 40-60.  doi: 10.1111/j.1937-5956.2009.01046.x.

[23]

G. W. LiuS. P. Sethi and J. X. Zhang, Myopic vs. far-sighted behaviours in a revenue-sharing supply chain with reference quality effects, Internat. J. Prod. Res., 54 (2016), 1334-1357.  doi: 10.1080/00207543.2015.1068962.

[24]

F. X. LuG. W. LiuJ. X. Zhang and W. S. Tang, Benefits of partial myopia in a durable product supply chain considering pricing and advertising, J. Oper. Res. Society, 67 (2016), 1309-1324.  doi: 10.1057/jors.2016.27.

[25]

P. MahataA. Gupta and G. C. Mahata, Optimal pricing and ordering policy for an EPQ inventory system with perishable items under partial tradecredit financing, Internat. J. Oper. Res., 21 (2015), 221-251.  doi: 10.1504/IJOR.2014.064607.

[26]

R. Maihami and B. Karimi, Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts, Comput. Oper. Res., 51 (2014), 302-312.  doi: 10.1016/j.cor.2014.05.022.

[27]

G. Martín-Herrán and S. Taboubi, Shelf-space allocation and advertising decisions in the marketing channel: A differential game approach, Int. Game Theory Rev., 7 (2005), 313-330.  doi: 10.1142/S0219198905000545.

[28]

G. Martín-HerránS. Taboubi and G. Zaccour, Dual role of price and myopia in a marketing channel, European J. Oper. Res., 219 (2012), 284-295.  doi: 10.1016/j.ejor.2011.12.015.

[29]

R. J. Meyer and J. W. Hutchinson, Bumbling geniuses: The power of everyday reasoning in multistage decision making, Wharton on Making Decisions, 2001, 37–61.

[30]

F. Ngendakuriyo and S. Taboubi, Pricing strategies of complementary products in distribution channels: A dynamic approach, Dyn. Games Appl., 7 (2017), 48-66.  doi: 10.1007/s13235-016-0181-7.

[31]

L. Y. OuyangK. S. WuC. T. Yang and H. F. Yen, Optimal order policy in response to announced price increase for deteriorating items with limited special order quantity, Internat. J. Systems Sci., 47 (2016), 718-729.  doi: 10.1080/00207721.2014.902157.

[32]

Z. Pang, Optimal dynamic pricing and inventory control with stock deterioration and partial backordering, Oper. Res. Lett., 39 (2011), 375-379.  doi: 10.1016/j.orl.2011.06.009.

[33]

M. PervinG. C. Mahata and S. K. Roy, An inventory model with demand declining market for deteriorating items under trade credit policy, Internat. J. Manag. Sci. and Engineering Manag., 11 (2016), 243-251.  doi: 10.1080/17509653.2015.1081082.

[34]

M. PervinS. K. Roy and G. W. Weber, Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Ann. Oper. Res., 260 (2018), 437-460.  doi: 10.1007/s10479-016-2355-5.

[35]

M. Pervin, S. K. Roy and G. W. Weber, Deteriorating inventory with preservation technology under price- and stock-sensitive demand, J. Ind. Manag. Optim., (2019). doi: 10.3934/jimo.2019019.

[36]

M. PervinS. K. Roy and G. W. Weber, An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numer. Algebra Control Optim., 8 (2018), 169-191.  doi: 10.3934/naco.2018010.

[37]

M. PervinS. K. Roy and G. W. Weber, Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy, J. Ind. Manag. Optim., 15 (2019), 1345-1373.  doi: 10.3934/jimo.2018098.

[38]

M. PervinS. K. Roy and G. W. Weber, A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numer. Algebra Control Optim., 7 (2017), 21-50.  doi: 10.3934/naco.2017002.

[39]

I. Popescu and Y. Wu, Dynamic pricing strategies with reference effects, Oper. Res., 55 (2007), 413-429.  doi: 10.1287/opre.1070.0393.

[40]

Y. QinJ. Wang and C. Wei, Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously, Internat. J. Produc. Econ., 152 (2014), 42-48.  doi: 10.1016/j.ijpe.2014.01.005.

[41]

M. RabbaniN. P. Zia and H. Rafiei, Joint optimal dynamic pricing and replenishment policies for items with simultaneous quality and physical quantity deterioration, Appl. Math. Comput., 287 (2016), 149-160.  doi: 10.1016/j.amc.2016.04.016.

[42]

R. C. Rao and F. M. Bass, Competition, strategy, and price dynamics: A theoretical and empirical investigation, J. Marketing Res., 22 (1985), 283-297.  doi: 10.1177/002224378502200304.

[43]

S. SahaI. Nielsenb and I. Moon, Optimal retailer investments in green operations and preservation technology for deteriorating items, J. Cleaner Produc., 140 (2017), 1514-1527.  doi: 10.1016/j.jclepro.2016.09.229.

[44]

N. H. ShahH. N. Soni and K. Patel, Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates, Omega - Int. J. Manag. Science, 41 (2013), 421-430.  doi: 10.1016/j.omega.2012.03.002.

[45]

Y. C. Tsao and G. J. Sheen, Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments, Comput. Oper. Res., 35 (2008), 3562-3580.  doi: 10.1016/j.cor.2007.01.024.

[46]

H. M. Wee, Joint pricing and replenishment policy for deteriorating inventory with declining market, Internat. J. Produc. Econ., 40 (1995), 163-171.  doi: 10.1016/0925-5273(95)00053-3.

[47]

H. M. Wee and S. T. Law, Replenishment and pricing policy for deteriorating items taking into account the time-value of money., Internat. J. Produc. Econ., 71 (2001), 213-220.  doi: 10.1016/S0925-5273(00)00121-3.

[48]

H. M. WeeS. T. LoJ. Yu and H. C. Chen, An inventory model for ameliorating and deteriorating items taking account of time value of money and finite planning horizon, Internat. J. Systems Sci., 39 (2008), 801-807.  doi: 10.1080/00207720801902523.

[49]

M. S. XueW. S. Tang and J. X. Zhang, Optimal dynamic pricing for deteriorating items with reference-price effects, Internat. J. Systems Sci., 47 (2016), 2022-2031.  doi: 10.1080/00207721.2014.970598.

[50]

M. S. XueJ. X. ZhangW. S. Tang and R. Dai, Quality improvement and pricing with reference quality effect, J. Systems Sci. Systems Engineering, 26 (2017), 665-682.  doi: 10.1007/s11518-017-5331-y.

[51]

J. X. ZhangQ. WeiQ. Zhang and W. S. Tang, Pricing, service and preservation technology investments policy for deteriorating items under common resource constraints, Computers & Industrial Engineering, 95 (2016), 1-9.  doi: 10.1016/j.cie.2016.02.014.

[52]

W. Zhao and Y. S. Zheng, Optimal dynamic pricing for perishable assets with nonhomogeneous demand, Management Science, 46 (2000), 375-388.  doi: 10.1287/mnsc.46.3.375.12063.

Figure 1.  The unit time total profits $ J_m(T) $ and $ J_f(T) $ versus $ T $
Figure 2.  The optimal pricing strategies $ p^*_m $ and $ p^*_f $ versus $ t $
Figure 3.  The effect of $ \delta $ on the unit time total profits $ J_m $ and $ J_f $
Figure 4.  The effect of $ \theta $ on the unit time total profits $ J_m $ and $ J_f $
[1]

Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial and Management Optimization, 2022, 18 (4) : 2533-2552. doi: 10.3934/jimo.2021079

[2]

Fuying Jing, Zirui Lan, Yang Pan. Forecast horizon of dynamic lot size model for perishable inventory with minimum order quantities. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1435-1456. doi: 10.3934/jimo.2019010

[3]

Prasenjit Pramanik, Sarama Malik Das, Manas Kumar Maiti. Note on : Supply chain inventory model for deteriorating items with maximum lifetime and partial trade credit to credit risk customers. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1289-1315. doi: 10.3934/jimo.2018096

[4]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1145-1160. doi: 10.3934/jimo.2021013

[5]

Shichen Zhang, Jianxiong Zhang, Jiang Shen, Wansheng Tang. A joint dynamic pricing and production model with asymmetric reference price effect. Journal of Industrial and Management Optimization, 2019, 15 (2) : 667-688. doi: 10.3934/jimo.2018064

[6]

Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial and Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933

[7]

Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091

[8]

Honglei Xu, Peng Sui, Guanglu Zhou, Louis Caccetta. Dampening bullwhip effect of order-up-to inventory strategies via an optimal control method. Numerical Algebra, Control and Optimization, 2013, 3 (4) : 655-664. doi: 10.3934/naco.2013.3.655

[9]

Guodong Yi, Xiaohong Chen, Chunqiao Tan. Optimal pricing of perishable products with replenishment policy in the presence of strategic consumers. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1579-1597. doi: 10.3934/jimo.2018112

[10]

Deepak Kumar Nayak, Sudhansu Sekhar Routray, Susanta Kumar Paikray, Hemen Dutta. A fuzzy inventory model for Weibull deteriorating items under completely backlogged shortages. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2435-2453. doi: 10.3934/dcdss.2020401

[11]

Muhammad Altaf Khan, Muhammad Farhan, Saeed Islam, Ebenezer Bonyah. Modeling the transmission dynamics of avian influenza with saturation and psychological effect. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 455-474. doi: 10.3934/dcdss.2019030

[12]

Jianxiong Zhang, Zhenyu Bai, Wansheng Tang. Optimal pricing policy for deteriorating items with preservation technology investment. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1261-1277. doi: 10.3934/jimo.2014.10.1261

[13]

Onur Kaya, Halit Bayer. Pricing and lot-sizing decisions for perishable products when demand changes by freshness. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3113-3129. doi: 10.3934/jimo.2020110

[14]

Kebing Chen, Haijie Zhou, Dong Lei. Two-period pricing and ordering decisions of perishable products with a learning period for demand disruption. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3131-3163. doi: 10.3934/jimo.2020111

[15]

Tien-Yu Lin, Ming-Te Chen, Kuo-Lung Hou. An inventory model for items with imperfect quality and quantity discounts under adjusted screening rate and earned interest. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1333-1347. doi: 10.3934/jimo.2016.12.1333

[16]

Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial and Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153

[17]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control and Optimization, 2017, 7 (1) : 21-50. doi: 10.3934/naco.2017002

[18]

Biswajit Sarkar, Bijoy Kumar Shaw, Taebok Kim, Mitali Sarkar, Dongmin Shin. An integrated inventory model with variable transportation cost, two-stage inspection, and defective items. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1975-1990. doi: 10.3934/jimo.2017027

[19]

Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control and Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004

[20]

Li Deng, Wenjie Bi, Haiying Liu, Kok Lay Teo. A multi-stage method for joint pricing and inventory model with promotion constrains. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1653-1682. doi: 10.3934/dcdss.2020097

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (550)
  • HTML views (884)
  • Cited by (2)

Other articles
by authors

[Back to Top]