
-
Previous Article
Supplier's investment in manufacturer's quality improvement with equity holding
- JIMO Home
- This Issue
-
Next Article
Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours
Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items
1. | School of Management, Tianjin Normal University, Tianjin 300387, China |
2. | Business School, Hunan University, Changsha, Hunan 410082, China |
This paper studies a dynamic pricing and replenishment problem for perishable items considering the behavior of decision-maker (partially myopic or forward-looking) and the dynamic effects of cumulative sales. A dynamic optimization model is presented to maximize the total profit per unit time and solved on the basis of Pontryagin's maximum principle. The optimal pricing and replenishment strategies for partially myopic and forward-looking scenarios are obtained. By comparing the partially myopic and forward-looking strategies through numerical analysis, we find the main results: First, applying a skimming pricing strategy might be a good choice when the saturation effects are considered. Second, the decreasing rate of product sales, deterioration coefficient, and holding cost of perishable items per unit exhibit impact on the behavioral preference of decision-maker. Under certain conditions, partially myopic behavior can bring more profit than forward-looking behavior. These managerial implications provide useful guidelines for the decision-maker.
References:
[1] |
N. Amrouche, G. Martín-Herrán and G. Zaccour,
Feedback Stackelberg equilibrium strategies when the private label competes with the national brand, Appl. Math. Model., 164 (2008), 79-95.
doi: 10.1007/s10479-008-0320-7. |
[2] |
M. Bakker, J. Riezebos and R. H. Teunter,
Review of inventory systems with deterioration since 2001, European J. Oper. Res., 221 (2012), 275-284.
doi: 10.1016/j.ejor.2012.03.004. |
[3] |
F. M. Bass and A. V. Bultez,
A note on optimal strategic pricing of technological innovations, Marketing Science, 1 (1982), 371-378.
doi: 10.1287/mksc.1.4.371. |
[4] |
H. Benchekroun, G. Martín-Herrán and S. Taboubi,
Could myopic pricing be a strategic choice in marketing channels? A game theoretic analysis, J. Econom. Dynam. Control, 33 (2009), 1699-1718.
doi: 10.1016/j.jedc.2009.03.005. |
[5] |
G. Bitran and R. Caldentey,
An overview of pricing models for revenue management, Manufacturing & Service Oper. Manag., 5 (2003), 203-229.
doi: 10.1287/msom.5.3.203.16031. |
[6] |
X. Q. Cai, Y. Feng, Y. J. Li and D. Shi,
Optimal pricing policy for a deteriorating product by dynamic tracking control, Internat. J. Prod. Res., 51 (2013), 2491-2504.
doi: 10.1080/00207543.2012.743688. |
[7] |
D. Chakravarti, A. Mitchell and R. Staelin,
Judgment based marketing decision models: An experimental investigation of the decision calculus approach, Management Science, 25 (1979), 251-263.
doi: 10.1287/mnsc.25.3.251. |
[8] |
H. Che, K. Sudhir and P. B. Seetharaman,
Bounded rationality in pricing under state-dependent demand: Do firms look ahead, and if so, how far?, J. of Marketing Research, 44 (2007), 434-449.
doi: 10.1509/jmkr.44.3.434. |
[9] |
W. Y. K. Chiang,
Supply chain dynamics and channel efficiency in durable product pricing and distribution, Manufacturing & Service Oper. Manag., 14 (2012), 327-343.
doi: 10.1287/msom.1110.0370. |
[10] |
C. Y. Dye,
Joint pricing and ordering policy for a deteriorating inventory with partial backlogging, Omega - Internat. J. Manag. Science, 35 (2007), 184-189.
doi: 10.1016/j.omega.2005.05.002. |
[11] |
L. Feng,
Dynamic pricing, quality investment, and replenishment model for perishable items, Int. Trans. Oper. Res., 26 (2019), 1558-1575.
doi: 10.1111/itor.12505. |
[12] |
M. Ferguson and M. E. Ketzenberg, Information sharing to improve retail product freshness of perishables, Prod. and Oper. Manag., 15 (2006), 57-73. Google Scholar |
[13] |
G. Fibich, A. Gavious and O. Lowengart,
Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects, Oper. Res., 51 (2003), 721-734.
doi: 10.1287/opre.51.5.721.16758. |
[14] |
S. K. Goyal and B. C. Giri,
Recent trends in modeling of deteriorating inventory, European J. Oper. Res., 134 (2001), 1-16.
doi: 10.1016/S0377-2217(00)00248-4. |
[15] |
G. J. Gutierrez and X. L. He,
Life-cycle channel coordination issues in launching an innovative durable product, Prod. and Oper. Manag., 20 (2011), 268-279.
doi: 10.1111/j.1937-5956.2010.01197.x. |
[16] |
J. R. Hauser, D. I. Simester and B. Wernerfelt,
Customer satisfaction incentives, Marketing Science, 13 (1994), 327-350.
doi: 10.1287/mksc.13.4.327. |
[17] |
S. Jørgensen, S. Taboubi and G. Zaccour,
Retail promotions with negative brand image effects: Is cooperation possible?, European J. Oper. Res., 150 (2003), 395-405.
doi: 10.1016/S0377-2217(02)00641-0. |
[18] |
S. Jørgensen and G. Zaccour, Differential Games in Marketing, International Series in Quantitative Marketing, Kluwer Academic Publishers, Boston, 2004. Google Scholar |
[19] |
M. I. Kamien and N. L. Schwartz, Dynamic Optimization: The calculus of variations and optimal control in economics and management, Advanced Textbooks in Economics, North-Holland Publishing Co, Amsterdam, 1991. |
[20] |
S. Kumar and S. P. Sethi,
Dynamic pricing and advertising for web content providers, European J. Oper. Res., 197 (2009), 924-944.
doi: 10.1016/j.ejor.2007.12.038. |
[21] |
S. T. Law and H. M. Wee,
An integrated production-inventory model for ameliorating and deteriorating items taking account of time discounting, Math. and Comput. Modelling, 43 (2006), 673-685.
doi: 10.1016/j.mcm.2005.12.012. |
[22] |
Y. Levin, J. Mcgill and M. Nediak,
Optimal dynamic pricing of perishable items by a monopolist facing strategic consumers, Prod. and Oper. Manag., 19 (2010), 40-60.
doi: 10.1111/j.1937-5956.2009.01046.x. |
[23] |
G. W. Liu, S. P. Sethi and J. X. Zhang,
Myopic vs. far-sighted behaviours in a revenue-sharing supply chain with reference quality effects, Internat. J. Prod. Res., 54 (2016), 1334-1357.
doi: 10.1080/00207543.2015.1068962. |
[24] |
F. X. Lu, G. W. Liu, J. X. Zhang and W. S. Tang,
Benefits of partial myopia in a durable product supply chain considering pricing and advertising, J. Oper. Res. Society, 67 (2016), 1309-1324.
doi: 10.1057/jors.2016.27. |
[25] |
P. Mahata, A. Gupta and G. C. Mahata,
Optimal pricing and ordering policy for an EPQ inventory system with perishable items under partial tradecredit financing, Internat. J. Oper. Res., 21 (2015), 221-251.
doi: 10.1504/IJOR.2014.064607. |
[26] |
R. Maihami and B. Karimi,
Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts, Comput. Oper. Res., 51 (2014), 302-312.
doi: 10.1016/j.cor.2014.05.022. |
[27] |
G. Martín-Herrán and S. Taboubi,
Shelf-space allocation and advertising decisions in the marketing channel: A differential game approach, Int. Game Theory Rev., 7 (2005), 313-330.
doi: 10.1142/S0219198905000545. |
[28] |
G. Martín-Herrán, S. Taboubi and G. Zaccour,
Dual role of price and myopia in a marketing channel, European J. Oper. Res., 219 (2012), 284-295.
doi: 10.1016/j.ejor.2011.12.015. |
[29] |
R. J. Meyer and J. W. Hutchinson, Bumbling geniuses: The power of everyday reasoning in multistage decision making, Wharton on Making Decisions, 2001, 37–61. Google Scholar |
[30] |
F. Ngendakuriyo and S. Taboubi,
Pricing strategies of complementary products in distribution channels: A dynamic approach, Dyn. Games Appl., 7 (2017), 48-66.
doi: 10.1007/s13235-016-0181-7. |
[31] |
L. Y. Ouyang, K. S. Wu, C. T. Yang and H. F. Yen,
Optimal order policy in response to announced price increase for deteriorating items with limited special order quantity, Internat. J. Systems Sci., 47 (2016), 718-729.
doi: 10.1080/00207721.2014.902157. |
[32] |
Z. Pang,
Optimal dynamic pricing and inventory control with stock deterioration and partial backordering, Oper. Res. Lett., 39 (2011), 375-379.
doi: 10.1016/j.orl.2011.06.009. |
[33] |
M. Pervin, G. C. Mahata and S. K. Roy,
An inventory model with demand declining market for deteriorating items under trade credit policy, Internat. J. Manag. Sci. and Engineering Manag., 11 (2016), 243-251.
doi: 10.1080/17509653.2015.1081082. |
[34] |
M. Pervin, S. K. Roy and G. W. Weber,
Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Ann. Oper. Res., 260 (2018), 437-460.
doi: 10.1007/s10479-016-2355-5. |
[35] |
M. Pervin, S. K. Roy and G. W. Weber, Deteriorating inventory with preservation technology under price- and stock-sensitive demand, J. Ind. Manag. Optim., (2019).
doi: 10.3934/jimo.2019019. |
[36] |
M. Pervin, S. K. Roy and G. W. Weber,
An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numer. Algebra Control Optim., 8 (2018), 169-191.
doi: 10.3934/naco.2018010. |
[37] |
M. Pervin, S. K. Roy and G. W. Weber,
Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy, J. Ind. Manag. Optim., 15 (2019), 1345-1373.
doi: 10.3934/jimo.2018098. |
[38] |
M. Pervin, S. K. Roy and G. W. Weber,
A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numer. Algebra Control Optim., 7 (2017), 21-50.
doi: 10.3934/naco.2017002. |
[39] |
I. Popescu and Y. Wu,
Dynamic pricing strategies with reference effects, Oper. Res., 55 (2007), 413-429.
doi: 10.1287/opre.1070.0393. |
[40] |
Y. Qin, J. Wang and C. Wei,
Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously, Internat. J. Produc. Econ., 152 (2014), 42-48.
doi: 10.1016/j.ijpe.2014.01.005. |
[41] |
M. Rabbani, N. P. Zia and H. Rafiei,
Joint optimal dynamic pricing and replenishment policies for items with simultaneous quality and physical quantity deterioration, Appl. Math. Comput., 287 (2016), 149-160.
doi: 10.1016/j.amc.2016.04.016. |
[42] |
R. C. Rao and F. M. Bass,
Competition, strategy, and price dynamics: A theoretical and empirical investigation, J. Marketing Res., 22 (1985), 283-297.
doi: 10.1177/002224378502200304. |
[43] |
S. Saha, I. Nielsenb and I. Moon,
Optimal retailer investments in green operations and preservation technology for deteriorating items, J. Cleaner Produc., 140 (2017), 1514-1527.
doi: 10.1016/j.jclepro.2016.09.229. |
[44] |
N. H. Shah, H. N. Soni and K. Patel,
Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates, Omega - Int. J. Manag. Science, 41 (2013), 421-430.
doi: 10.1016/j.omega.2012.03.002. |
[45] |
Y. C. Tsao and G. J. Sheen,
Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments, Comput. Oper. Res., 35 (2008), 3562-3580.
doi: 10.1016/j.cor.2007.01.024. |
[46] |
H. M. Wee,
Joint pricing and replenishment policy for deteriorating inventory with declining market, Internat. J. Produc. Econ., 40 (1995), 163-171.
doi: 10.1016/0925-5273(95)00053-3. |
[47] |
H. M. Wee and S. T. Law,
Replenishment and pricing policy for deteriorating items taking into account the time-value of money., Internat. J. Produc. Econ., 71 (2001), 213-220.
doi: 10.1016/S0925-5273(00)00121-3. |
[48] |
H. M. Wee, S. T. Lo, J. Yu and H. C. Chen,
An inventory model for ameliorating and deteriorating items taking account of time value of money and finite planning horizon, Internat. J. Systems Sci., 39 (2008), 801-807.
doi: 10.1080/00207720801902523. |
[49] |
M. S. Xue, W. S. Tang and J. X. Zhang,
Optimal dynamic pricing for deteriorating items with reference-price effects, Internat. J. Systems Sci., 47 (2016), 2022-2031.
doi: 10.1080/00207721.2014.970598. |
[50] |
M. S. Xue, J. X. Zhang, W. S. Tang and R. Dai,
Quality improvement and pricing with reference quality effect, J. Systems Sci. Systems Engineering, 26 (2017), 665-682.
doi: 10.1007/s11518-017-5331-y. |
[51] |
J. X. Zhang, Q. Wei, Q. Zhang and W. S. Tang,
Pricing, service and preservation technology investments policy for deteriorating items under common resource constraints, Computers & Industrial Engineering, 95 (2016), 1-9.
doi: 10.1016/j.cie.2016.02.014. |
[52] |
W. Zhao and Y. S. Zheng,
Optimal dynamic pricing for perishable assets with nonhomogeneous demand, Management Science, 46 (2000), 375-388.
doi: 10.1287/mnsc.46.3.375.12063. |
show all references
References:
[1] |
N. Amrouche, G. Martín-Herrán and G. Zaccour,
Feedback Stackelberg equilibrium strategies when the private label competes with the national brand, Appl. Math. Model., 164 (2008), 79-95.
doi: 10.1007/s10479-008-0320-7. |
[2] |
M. Bakker, J. Riezebos and R. H. Teunter,
Review of inventory systems with deterioration since 2001, European J. Oper. Res., 221 (2012), 275-284.
doi: 10.1016/j.ejor.2012.03.004. |
[3] |
F. M. Bass and A. V. Bultez,
A note on optimal strategic pricing of technological innovations, Marketing Science, 1 (1982), 371-378.
doi: 10.1287/mksc.1.4.371. |
[4] |
H. Benchekroun, G. Martín-Herrán and S. Taboubi,
Could myopic pricing be a strategic choice in marketing channels? A game theoretic analysis, J. Econom. Dynam. Control, 33 (2009), 1699-1718.
doi: 10.1016/j.jedc.2009.03.005. |
[5] |
G. Bitran and R. Caldentey,
An overview of pricing models for revenue management, Manufacturing & Service Oper. Manag., 5 (2003), 203-229.
doi: 10.1287/msom.5.3.203.16031. |
[6] |
X. Q. Cai, Y. Feng, Y. J. Li and D. Shi,
Optimal pricing policy for a deteriorating product by dynamic tracking control, Internat. J. Prod. Res., 51 (2013), 2491-2504.
doi: 10.1080/00207543.2012.743688. |
[7] |
D. Chakravarti, A. Mitchell and R. Staelin,
Judgment based marketing decision models: An experimental investigation of the decision calculus approach, Management Science, 25 (1979), 251-263.
doi: 10.1287/mnsc.25.3.251. |
[8] |
H. Che, K. Sudhir and P. B. Seetharaman,
Bounded rationality in pricing under state-dependent demand: Do firms look ahead, and if so, how far?, J. of Marketing Research, 44 (2007), 434-449.
doi: 10.1509/jmkr.44.3.434. |
[9] |
W. Y. K. Chiang,
Supply chain dynamics and channel efficiency in durable product pricing and distribution, Manufacturing & Service Oper. Manag., 14 (2012), 327-343.
doi: 10.1287/msom.1110.0370. |
[10] |
C. Y. Dye,
Joint pricing and ordering policy for a deteriorating inventory with partial backlogging, Omega - Internat. J. Manag. Science, 35 (2007), 184-189.
doi: 10.1016/j.omega.2005.05.002. |
[11] |
L. Feng,
Dynamic pricing, quality investment, and replenishment model for perishable items, Int. Trans. Oper. Res., 26 (2019), 1558-1575.
doi: 10.1111/itor.12505. |
[12] |
M. Ferguson and M. E. Ketzenberg, Information sharing to improve retail product freshness of perishables, Prod. and Oper. Manag., 15 (2006), 57-73. Google Scholar |
[13] |
G. Fibich, A. Gavious and O. Lowengart,
Explicit solutions of optimization models and differential games with nonsmooth (asymmetric) reference-price effects, Oper. Res., 51 (2003), 721-734.
doi: 10.1287/opre.51.5.721.16758. |
[14] |
S. K. Goyal and B. C. Giri,
Recent trends in modeling of deteriorating inventory, European J. Oper. Res., 134 (2001), 1-16.
doi: 10.1016/S0377-2217(00)00248-4. |
[15] |
G. J. Gutierrez and X. L. He,
Life-cycle channel coordination issues in launching an innovative durable product, Prod. and Oper. Manag., 20 (2011), 268-279.
doi: 10.1111/j.1937-5956.2010.01197.x. |
[16] |
J. R. Hauser, D. I. Simester and B. Wernerfelt,
Customer satisfaction incentives, Marketing Science, 13 (1994), 327-350.
doi: 10.1287/mksc.13.4.327. |
[17] |
S. Jørgensen, S. Taboubi and G. Zaccour,
Retail promotions with negative brand image effects: Is cooperation possible?, European J. Oper. Res., 150 (2003), 395-405.
doi: 10.1016/S0377-2217(02)00641-0. |
[18] |
S. Jørgensen and G. Zaccour, Differential Games in Marketing, International Series in Quantitative Marketing, Kluwer Academic Publishers, Boston, 2004. Google Scholar |
[19] |
M. I. Kamien and N. L. Schwartz, Dynamic Optimization: The calculus of variations and optimal control in economics and management, Advanced Textbooks in Economics, North-Holland Publishing Co, Amsterdam, 1991. |
[20] |
S. Kumar and S. P. Sethi,
Dynamic pricing and advertising for web content providers, European J. Oper. Res., 197 (2009), 924-944.
doi: 10.1016/j.ejor.2007.12.038. |
[21] |
S. T. Law and H. M. Wee,
An integrated production-inventory model for ameliorating and deteriorating items taking account of time discounting, Math. and Comput. Modelling, 43 (2006), 673-685.
doi: 10.1016/j.mcm.2005.12.012. |
[22] |
Y. Levin, J. Mcgill and M. Nediak,
Optimal dynamic pricing of perishable items by a monopolist facing strategic consumers, Prod. and Oper. Manag., 19 (2010), 40-60.
doi: 10.1111/j.1937-5956.2009.01046.x. |
[23] |
G. W. Liu, S. P. Sethi and J. X. Zhang,
Myopic vs. far-sighted behaviours in a revenue-sharing supply chain with reference quality effects, Internat. J. Prod. Res., 54 (2016), 1334-1357.
doi: 10.1080/00207543.2015.1068962. |
[24] |
F. X. Lu, G. W. Liu, J. X. Zhang and W. S. Tang,
Benefits of partial myopia in a durable product supply chain considering pricing and advertising, J. Oper. Res. Society, 67 (2016), 1309-1324.
doi: 10.1057/jors.2016.27. |
[25] |
P. Mahata, A. Gupta and G. C. Mahata,
Optimal pricing and ordering policy for an EPQ inventory system with perishable items under partial tradecredit financing, Internat. J. Oper. Res., 21 (2015), 221-251.
doi: 10.1504/IJOR.2014.064607. |
[26] |
R. Maihami and B. Karimi,
Optimizing the pricing and replenishment policy for non-instantaneous deteriorating items with stochastic demand and promotional efforts, Comput. Oper. Res., 51 (2014), 302-312.
doi: 10.1016/j.cor.2014.05.022. |
[27] |
G. Martín-Herrán and S. Taboubi,
Shelf-space allocation and advertising decisions in the marketing channel: A differential game approach, Int. Game Theory Rev., 7 (2005), 313-330.
doi: 10.1142/S0219198905000545. |
[28] |
G. Martín-Herrán, S. Taboubi and G. Zaccour,
Dual role of price and myopia in a marketing channel, European J. Oper. Res., 219 (2012), 284-295.
doi: 10.1016/j.ejor.2011.12.015. |
[29] |
R. J. Meyer and J. W. Hutchinson, Bumbling geniuses: The power of everyday reasoning in multistage decision making, Wharton on Making Decisions, 2001, 37–61. Google Scholar |
[30] |
F. Ngendakuriyo and S. Taboubi,
Pricing strategies of complementary products in distribution channels: A dynamic approach, Dyn. Games Appl., 7 (2017), 48-66.
doi: 10.1007/s13235-016-0181-7. |
[31] |
L. Y. Ouyang, K. S. Wu, C. T. Yang and H. F. Yen,
Optimal order policy in response to announced price increase for deteriorating items with limited special order quantity, Internat. J. Systems Sci., 47 (2016), 718-729.
doi: 10.1080/00207721.2014.902157. |
[32] |
Z. Pang,
Optimal dynamic pricing and inventory control with stock deterioration and partial backordering, Oper. Res. Lett., 39 (2011), 375-379.
doi: 10.1016/j.orl.2011.06.009. |
[33] |
M. Pervin, G. C. Mahata and S. K. Roy,
An inventory model with demand declining market for deteriorating items under trade credit policy, Internat. J. Manag. Sci. and Engineering Manag., 11 (2016), 243-251.
doi: 10.1080/17509653.2015.1081082. |
[34] |
M. Pervin, S. K. Roy and G. W. Weber,
Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Ann. Oper. Res., 260 (2018), 437-460.
doi: 10.1007/s10479-016-2355-5. |
[35] |
M. Pervin, S. K. Roy and G. W. Weber, Deteriorating inventory with preservation technology under price- and stock-sensitive demand, J. Ind. Manag. Optim., (2019).
doi: 10.3934/jimo.2019019. |
[36] |
M. Pervin, S. K. Roy and G. W. Weber,
An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numer. Algebra Control Optim., 8 (2018), 169-191.
doi: 10.3934/naco.2018010. |
[37] |
M. Pervin, S. K. Roy and G. W. Weber,
Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy, J. Ind. Manag. Optim., 15 (2019), 1345-1373.
doi: 10.3934/jimo.2018098. |
[38] |
M. Pervin, S. K. Roy and G. W. Weber,
A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numer. Algebra Control Optim., 7 (2017), 21-50.
doi: 10.3934/naco.2017002. |
[39] |
I. Popescu and Y. Wu,
Dynamic pricing strategies with reference effects, Oper. Res., 55 (2007), 413-429.
doi: 10.1287/opre.1070.0393. |
[40] |
Y. Qin, J. Wang and C. Wei,
Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously, Internat. J. Produc. Econ., 152 (2014), 42-48.
doi: 10.1016/j.ijpe.2014.01.005. |
[41] |
M. Rabbani, N. P. Zia and H. Rafiei,
Joint optimal dynamic pricing and replenishment policies for items with simultaneous quality and physical quantity deterioration, Appl. Math. Comput., 287 (2016), 149-160.
doi: 10.1016/j.amc.2016.04.016. |
[42] |
R. C. Rao and F. M. Bass,
Competition, strategy, and price dynamics: A theoretical and empirical investigation, J. Marketing Res., 22 (1985), 283-297.
doi: 10.1177/002224378502200304. |
[43] |
S. Saha, I. Nielsenb and I. Moon,
Optimal retailer investments in green operations and preservation technology for deteriorating items, J. Cleaner Produc., 140 (2017), 1514-1527.
doi: 10.1016/j.jclepro.2016.09.229. |
[44] |
N. H. Shah, H. N. Soni and K. Patel,
Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates, Omega - Int. J. Manag. Science, 41 (2013), 421-430.
doi: 10.1016/j.omega.2012.03.002. |
[45] |
Y. C. Tsao and G. J. Sheen,
Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payments, Comput. Oper. Res., 35 (2008), 3562-3580.
doi: 10.1016/j.cor.2007.01.024. |
[46] |
H. M. Wee,
Joint pricing and replenishment policy for deteriorating inventory with declining market, Internat. J. Produc. Econ., 40 (1995), 163-171.
doi: 10.1016/0925-5273(95)00053-3. |
[47] |
H. M. Wee and S. T. Law,
Replenishment and pricing policy for deteriorating items taking into account the time-value of money., Internat. J. Produc. Econ., 71 (2001), 213-220.
doi: 10.1016/S0925-5273(00)00121-3. |
[48] |
H. M. Wee, S. T. Lo, J. Yu and H. C. Chen,
An inventory model for ameliorating and deteriorating items taking account of time value of money and finite planning horizon, Internat. J. Systems Sci., 39 (2008), 801-807.
doi: 10.1080/00207720801902523. |
[49] |
M. S. Xue, W. S. Tang and J. X. Zhang,
Optimal dynamic pricing for deteriorating items with reference-price effects, Internat. J. Systems Sci., 47 (2016), 2022-2031.
doi: 10.1080/00207721.2014.970598. |
[50] |
M. S. Xue, J. X. Zhang, W. S. Tang and R. Dai,
Quality improvement and pricing with reference quality effect, J. Systems Sci. Systems Engineering, 26 (2017), 665-682.
doi: 10.1007/s11518-017-5331-y. |
[51] |
J. X. Zhang, Q. Wei, Q. Zhang and W. S. Tang,
Pricing, service and preservation technology investments policy for deteriorating items under common resource constraints, Computers & Industrial Engineering, 95 (2016), 1-9.
doi: 10.1016/j.cie.2016.02.014. |
[52] |
W. Zhao and Y. S. Zheng,
Optimal dynamic pricing for perishable assets with nonhomogeneous demand, Management Science, 46 (2000), 375-388.
doi: 10.1287/mnsc.46.3.375.12063. |
[1] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[2] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[3] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
[4] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[5] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[6] |
Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021002 |
[7] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[8] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[9] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[10] |
Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056 |
[11] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[12] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[13] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[14] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[15] |
Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177 |
[16] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[17] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[18] |
Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020356 |
[19] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[20] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]