This paper extends a newly developed computational optimization approach to a specific class of Maximal Covering Location Problems (MCLPs) with a switched dynamic structure. Most of the results obtained for the conventional MCLP address the "static" case where an optimal decision is determined on a fixed time-period. In our contribution we consider a dynamic MCLP based optimal decision making and propose an effective computational method for the numerical treatment of the switched-type Dynamic Maximal Covering Location Problem (DMCLP). A generic geometrical structure of the constraints under consideration makes it possible to separate the originally given dynamic optimization problem and reduce it to a specific family of relative simple auxiliary problems. The generalized Separation Method (SM) for the DMCLP with a switched structure finally leads to a computational solution scheme. The resulting numerical algorithm also includes the classic Lagrange relaxation. We present a rigorous formal analysis of the DMCLP optimization methodology and also discuss computational aspects. The proposed SM based algorithm is finally applied to a practically oriented example, namely, to an optimal design of a (dynamic) mobile network configuration.
Citation: |
[1] | K. Atkinson and W. Han, Theoretical Numerical Analysis, Texts in Applied Mathematics, 39, Springer, New York, 2005. doi: 10.1007/978-0-387-28769-0. |
[2] | V. Azhmyakov, A Relaxation Based Approach to Optimal Control of Hybrid and Switched Systems, Elsevier, Oxford, 2019. |
[3] | V. Azhmyakov, M. Basin and C. Reincke-Collon, Optimal LQ-type switched control design for a class of linear systems with piecewise constant inputs, IFAC Proceedings Volumes, 47 (2014), 6976-6981. doi: 10.3182/20140824-6-ZA-1003.00515. |
[4] | V. Azhmyakov, M. V. Basin and J. Raisch, A proximal point based approach to optimal control of affine switched systems, Discrete Event Dyn. Syst., 22 (2012), 61-81. doi: 10.1007/s10626-011-0109-8. |
[5] | V. Azhmyakov, J. Cabrera and A. Poznyak, Optimal fixed-levels control for non-linear systems with quadratic cost functionals, Optimal Control Appl. Methods, 37 (2016), 1035-1055. doi: 10.1002/oca.2223. |
[6] | V. Azhmyakov, J. P. Fernández-Gutiérrez, S. K. Gadi and St. Pickl, A novel numerical approach to the MCLP based resilent supply chain optimization, IFAC - PapersOnLine, 49 (2016), 137-142. doi: 10.1016/j.ifacol.2016.12.175. |
[7] | V. Azhmyakov and W. Schmidt, Approximations of relaxed optimal control problems, J. Optim. Theory Appl., 130 (2006), 61-77. doi: 10.1007/s10957-006-9085-9. |
[8] | V. Batanovic, D. Petrovic and R. Petrovic, Fuzzy logic based algorithms for maximum covering location problems, Information Sci., 179 (2009), 120-129. doi: 10.1016/j.ins.2008.08.019. |
[9] | O. Berman, J. Kalcsics, D. Krass and S. Nickel, The ordered gradual covering location problem on a network, Discrete Appl. Math., 157 (2009), 3689-3707. doi: 10.1016/j.dam.2009.08.003. |
[10] | D. Bertsekas, Nonlinear Programming, Athena Scientific Optimization and Computation Series, Athena Scientific, Belmont, 1995. doi: 10.1057/palgrave.jors.2600425. |
[11] | M. Boccadoro, Y. Wardi, M. Egerstedt and E. I. Verriest, Optimal control of switching surfaces in hybrid dynamical systems, Discrete Event Dyn. Syst., 15 (2005), 433-448. doi: 10.1007/s10626-005-4060-4. |
[12] | M. S. Canbolat and M. von Massow, Planar maximal covering with ellipses, Comp. Ind. Engineering, 57 (2009), 201-208. doi: 10.1016/j.cie.2008.11.015. |
[13] | R. L. Church and C. S ReVelle, The maximal covering location problem, Papers of the Regional Science Association, 32 (1974), 101-118. doi: 10.1111/j.1435-5597.1974.tb00902.x. |
[14] | C. A. C. Coello, G. B. Lamont and D. A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Genetic Algorithms and Evolutionary Computation, 5, Kluwer Academic, New York, 2002. doi: 10.1007/978-1-4757-5184-0. |
[15] | P. Dell Olmo, N. Ricciardi and A. Sgalambro, A multiperiod maximal covering location model for the optimal location of intersection safety cameras on an urban traffic network, Procedia - Social and Behavioral Sci., 108 (2014), 106-117. doi: 10.1016/j.sbspro.2013.12.824. |
[16] | L. Dupont, M. Lauras and C. Yugma, Generalized covering location problem with multiple-coverage: Exact and heuristic method, IFAC Proceedings Volumes, 46 (2013), 442-447. doi: 10.3182/20130619-3-RU-3018.00144. |
[17] | M. H. Fazel Zarandi, S. Davari and S. A. Haddad Sisakht, The large-scale dynamic maximal covering location problem, Math. Comput. Modelling, 57 (2013), 710-719. doi: 10.1016/j.mcm.2012.07.028. |
[18] | R. D. Galvao, L. G. Acosta Espejo and B. Boffey, A comparison of Lagrangian and surrogate relaxations for the maximal covering location problem, European J. Oper. Res., 124 (2000), 377-389. doi: 10.1016/S0377-2217(99)00171-X. |
[19] | M. Gendreau, G. Laporte and F. Semet, A dynamic model and parallel tabu search heuristic for real-time ambulance relocation, Parallel Comput., 27 (2001), 1641-1653. doi: 10.1016/S0167-8191(01)00103-X. |
[20] | J. Gu, Y. Zhou, A. Das, I. Moon and G. M. Lee, Medical relief shelter location problem with patient severity under a limited relief budget, Comput. Ind. Engineering, 125 (2018), 720-728. doi: 10.1016/j.cie.2018.03.027. |
[21] | J. Jahn, Vector Optimization, Springer, Berlin, 2004. doi: 10.1007/978-3-540-24828-6. |
[22] | G. Ji and S. Han, A strategy analysis in dual-channel supply chain based on effort levels, Proceedings of the 1th International Conference on Service Systems and Service Management, Beijing, China, 2014. doi: 10.1109/ICSSSM.2014.6943407. |
[23] | H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problem, Springer, Berlin, 2004. doi: 10.1007/978-3-540-24777-7. |
[24] | A. Mitsos, B. Chachuat and P. I. Barton, McCormick-based relaxation algorithm, SIAM J. Optim., 20 (2009), 573-601. doi: 10.1137/080717341. |
[25] | G. C. Moore and C. S. ReVelle, The hierarchical service location problem, Management Sci., 28 (1982), 775-780. doi: 10.1287/mnsc.28.7.775. |
[26] | A. Ozkis and A. Babalik, A novel metaheuristic for multi-objective optimization problems: the multi-objective vortex search algorithm, Information Sci., 402 (2017), 124-148. doi: 10.1016/j.ins.2017.03.026. |
[27] | E. Polak, Optimization, Applied Mathematical Sciences, 124, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0663-7. |
[28] | C. ReVelle, M. Scholssberg and J. Williams, Solving the maximal covering location problem with heuristic concentration, Comput. Oper. Res., 35 (2008), 427-435. doi: 10.1016/j.cor.2006.03.007. |
[29] | T. Roubicek, Relaxation in Optimization Theory and Variational Calculus, De Gruyter Series in Nonlinear Analysis and Applications, 4, Walter de Gruyter & Co., Berlin, 1997. doi: 10.1515/9783110811919. |
[30] | H. Shavandi and H. Mahlooji, A fuzzy queuing location model with a genetic algorithm for congested systems, Appl. Math. Comput., 181 (2006), 440-456. doi: 10.1016/j.amc.2005.12.058. |
[31] | P. Sitek and J. Wikarek, A hybrid approach to modeling and optimization for supply chain management with multimodal transport, Proceedings of the 18th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, 2013. doi: 10.1109/MMAR.2013.6670011. |
[32] | E. Talbi, M. Basseur, A. J. Nebro and E. Alba, Multi-objective optimization using metaheuristics: Non-standard algorithms, Int. Trans. Oper. Res., 19 (2012), 283-305. doi: 10.1111/j.1475-3995.2011.00808.x. |
[33] | E. I. Verriest, Pseudo-continuous multi-dimensional multi-mode systems, Discrete Event Dyn. Syst., 22 (2012), 27-59. doi: 10.1007/s10626-011-0113-z. |
[34] | E. I. Verriest and V. Azhmyakov, Advances in optimal control of differential systems with state suprema, Proceedings of the 56th Conference on Decision and Control, Melbourne, Australia, 2017. doi: 10.1109/CDC.2017.8263748. |
[35] | Y. Wardi, Switched-mode systems: Gradient-descent algorithms with Armijo step sizes, Discrete Event Dyn. Syst., 25 (2015), 571-599. doi: 10.1007/s10626-014-0198-2. |
[36] | F. Zarandi, A. Haddad Sisakht and S. Davari, Design of a closed-loop supply chain (CLSC) model using an interactive fuzzy goal programming, Internat. J. Adv. Manufac. Tech., 56 (2011), 809-821. doi: 10.1007/s00170-011-3212-y. |
Optimal dynamics of the switched decision variables