March  2021, 17(2): 687-693. doi: 10.3934/jimo.2019129

Note on $ Z $-eigenvalue inclusion theorems for tensors

School of Mathematics and Statistics, Yunnan University, Kunming 650091, China

Received  January 2019 Revised  April 2019 Published  October 2019

Wang et al. gave four $ Z $-eigenvalue inclusion intervals for tensors in [Discrete and Continuous Dynamical Systems Series B, 1 (2017), 187-198]. However, these intervals always include zero, and hence could not be used to identify the positive definiteness of a homogeneous polynomial form. In this note, we present a new $ Z $-eigenvalue inclusion interval with parameters for even-order tensors, which not only overcomes the above shortcomings under certain conditions, but also provides a checkable sufficient condition for the positive definiteness of homogeneous polynomial forms, as well as the asymptotically stability of time-invariant polynomial systems.

Citation: Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129
References:
[1]

K. C. ChangK. J. Pearson and T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.  doi: 10.1016/j.laa.2013.02.013.  Google Scholar

[2]

C. DengH. Li and C. Bu, Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors, Linear Algebra Appl., 556 (2018), 55-69.  doi: 10.1016/j.laa.2018.06.032.  Google Scholar

[3]

P. V. D. Driessche, Reproduction numbers of infectious disease models., Infectious Disease Model., 2 (2017), 288-303.  doi: 10.1016/j.idm.2017.06.002.  Google Scholar

[4]

O. Duchenne, F. Bach and I. S. Kweon, et al, A tensor-based algorithm for high-order graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 2383-2395. doi: 10.1109/CVPR.2009.5206619.  Google Scholar

[5]

J. He, Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20 (2016), 1290-1301.   Google Scholar

[6]

J. He and T. Huang, Upper bound for the largest Z-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.  doi: 10.1016/j.aml.2014.07.012.  Google Scholar

[7]

J. He, Y. Liu and H. Ke, et al, Bounds for the Z-spectral radius of nonnegative tensors, SpringerPlus, 5 (2016). doi: 10.1186/s40064-016-3338-3.  Google Scholar

[8]

J. HeY. LiuJ. Tian and Z. Zhang, New sufficient condition for the positive definiteness of fourth order tensors, Mathematics, 303 (2018), 1-10.  doi: 10.3390/math6120303.  Google Scholar

[9]

E. Kofidis and P. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.  doi: 10.1137/S0895479801387413.  Google Scholar

[10]

T. Kolda and J. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.  doi: 10.1137/100801482.  Google Scholar

[11]

C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.  doi: 10.1002/nla.1858.  Google Scholar

[12]

C. LiF. WangJ. ZhaoY. Zhu and Y. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1-14.  doi: 10.1016/j.cam.2013.04.022.  Google Scholar

[13]

G. LiL. Qi and G. Yu, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra Appl., 20 (2013), 1001-1029.  doi: 10.1002/nla.1877.  Google Scholar

[14]

W. LiD. Liu and S. W. Vong, Z-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199.  doi: 10.1016/j.laa.2015.05.033.  Google Scholar

[15]

M. NgL. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.  doi: 10.1137/09074838X.  Google Scholar

[16]

Q. NiL. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Control, 53 (2008), 1096-1107.  doi: 10.1109/TAC.2008.923679.  Google Scholar

[17]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[18]

L. Qi, Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput., 41 (2006), 1309-1327.  doi: 10.1016/j.jsc.2006.02.011.  Google Scholar

[19]

L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, 2017. doi: 10.1137/1.9781611974751.ch1.  Google Scholar

[20]

L. QiF. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem., Math. Program., 118 (2009), 301-316.  doi: 10.1007/s10107-007-0193-6.  Google Scholar

[21]

C. Sang, A new Brauer-type Z-eigenvalue inclusion set for tensors, Numer. Algorithms, 80 (2019), 781-794.  doi: 10.1007/s11075-018-0506-2.  Google Scholar

[22]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.  doi: 10.1137/130909135.  Google Scholar

[23]

G. WangG. Zhou and L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 187-198.  doi: 10.3934/dcdsb.2017009.  Google Scholar

show all references

References:
[1]

K. C. ChangK. J. Pearson and T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.  doi: 10.1016/j.laa.2013.02.013.  Google Scholar

[2]

C. DengH. Li and C. Bu, Brauer-type eigenvalue inclusion sets of stochastic/irreducible tensors and positive definiteness of tensors, Linear Algebra Appl., 556 (2018), 55-69.  doi: 10.1016/j.laa.2018.06.032.  Google Scholar

[3]

P. V. D. Driessche, Reproduction numbers of infectious disease models., Infectious Disease Model., 2 (2017), 288-303.  doi: 10.1016/j.idm.2017.06.002.  Google Scholar

[4]

O. Duchenne, F. Bach and I. S. Kweon, et al, A tensor-based algorithm for high-order graph matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33 (2011), 2383-2395. doi: 10.1109/CVPR.2009.5206619.  Google Scholar

[5]

J. He, Bounds for the largest eigenvalue of nonnegative tensors, J. Comput. Anal. Appl., 20 (2016), 1290-1301.   Google Scholar

[6]

J. He and T. Huang, Upper bound for the largest Z-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.  doi: 10.1016/j.aml.2014.07.012.  Google Scholar

[7]

J. He, Y. Liu and H. Ke, et al, Bounds for the Z-spectral radius of nonnegative tensors, SpringerPlus, 5 (2016). doi: 10.1186/s40064-016-3338-3.  Google Scholar

[8]

J. HeY. LiuJ. Tian and Z. Zhang, New sufficient condition for the positive definiteness of fourth order tensors, Mathematics, 303 (2018), 1-10.  doi: 10.3390/math6120303.  Google Scholar

[9]

E. Kofidis and P. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.  doi: 10.1137/S0895479801387413.  Google Scholar

[10]

T. Kolda and J. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl., 32 (2011), 1095-1124.  doi: 10.1137/100801482.  Google Scholar

[11]

C. LiY. Li and X. Kong, New eigenvalue inclusion sets for tensors, Numer. Linear Algebra Appl., 21 (2014), 39-50.  doi: 10.1002/nla.1858.  Google Scholar

[12]

C. LiF. WangJ. ZhaoY. Zhu and Y. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Appl. Math., 255 (2014), 1-14.  doi: 10.1016/j.cam.2013.04.022.  Google Scholar

[13]

G. LiL. Qi and G. Yu, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra Appl., 20 (2013), 1001-1029.  doi: 10.1002/nla.1877.  Google Scholar

[14]

W. LiD. Liu and S. W. Vong, Z-eigenpair bounds for an irreducible nonnegative tensor, Linear Algebra Appl., 483 (2015), 182-199.  doi: 10.1016/j.laa.2015.05.033.  Google Scholar

[15]

M. NgL. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. Appl., 31 (2009), 1090-1099.  doi: 10.1137/09074838X.  Google Scholar

[16]

Q. NiL. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Automat. Control, 53 (2008), 1096-1107.  doi: 10.1109/TAC.2008.923679.  Google Scholar

[17]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[18]

L. Qi, Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines, J. Symbolic Comput., 41 (2006), 1309-1327.  doi: 10.1016/j.jsc.2006.02.011.  Google Scholar

[19]

L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, Society for Industrial and Applied Mathematics, Philadelphia, 2017. doi: 10.1137/1.9781611974751.ch1.  Google Scholar

[20]

L. QiF. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization problem., Math. Program., 118 (2009), 301-316.  doi: 10.1007/s10107-007-0193-6.  Google Scholar

[21]

C. Sang, A new Brauer-type Z-eigenvalue inclusion set for tensors, Numer. Algorithms, 80 (2019), 781-794.  doi: 10.1007/s11075-018-0506-2.  Google Scholar

[22]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.  doi: 10.1137/130909135.  Google Scholar

[23]

G. WangG. Zhou and L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 187-198.  doi: 10.3934/dcdsb.2017009.  Google Scholar

[1]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[2]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[3]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[4]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[5]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[6]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[7]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[8]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[9]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[10]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[11]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[12]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[13]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[14]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[15]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[16]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[17]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[18]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[19]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[20]

Yu-Hsien Liao. Solutions and characterizations under multicriteria management systems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021041

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (300)
  • HTML views (524)
  • Cited by (1)

Other articles
by authors

[Back to Top]