• Previous Article
    Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem
  • JIMO Home
  • This Issue
  • Next Article
    A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure
doi: 10.3934/jimo.2019130

Robust multi-period and multi-objective portfolio selection

Department of Mathematics and Statistics, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

* Corresponding author: lydiajianglin@gmail.com

Received  January 2019 Revised  June 2019 Published  October 2019

In this paper, a multi-period multi-objective portfolio selection problem with uncertainty is studied. Under the assumption that the uncertainty set is ellipsoidal, the robust counterpart of the proposed problem can be transformed into a standard multi-objective optimization problem. A weighted-sum approach is then introduced to obtain Pareto front of the problem. Numerical examples will be presented to illustrate the proposed method and validate the effectiveness and efficiency of the model developed.

Citation: Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019130
References:
[1]

A. Ben-Tal and A. Nemirovski, Robust optimization-methodology and applications, Math. Program., 92 (2002), 453-480.  doi: 10.1007/s101070100286.  Google Scholar

[2]

X. CuiX. Sun and D. Sha, An empirical study on discrete optimization models for portfolio selection, J. Ind. Manag. Optim., 5 (2009), 33-46.  doi: 10.3934/jimo.2009.5.33.  Google Scholar

[3]

K. DebA. PratapS. Agarwal and T. A. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Comput., 6 (2002), 182-197.  doi: 10.1109/4235.996017.  Google Scholar

[4]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1-38.  doi: 10.1287/moor.28.1.1.14260.  Google Scholar

[5]

D. HuangS. ZhuF. J. Fabozzi and M. Fukushima, Portfolio selection under distributional uncertainty: A relative robust CVaR approach, European J. Oper. Res., 203 (2010), 185-194.  doi: 10.1016/j.ejor.2009.07.010.  Google Scholar

[6]

K. Khalili-Damghani and M. Amiri, Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA, Reliability Engineering and System Safety, 103 (2012), 35-44.  doi: 10.1016/j.ress.2012.03.006.  Google Scholar

[7]

C. C. Lin and Y. T. Liu, Genetic algorithms for portfolio selection problems with minimum transaction lots, European J. Oper. Res., 185 (2008), 393-404.  doi: 10.1016/j.ejor.2006.12.024.  Google Scholar

[8]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, John Wiley & Sons, Inc., New York, 1959.  Google Scholar

[9]

R. T. Marler and J. S. Arora, The weighted sum method for multi-objective optimization: New insights, Struct. Multidiscip. Optim., 41 (2010), 853-862.  doi: 10.1007/s00158-009-0460-7.  Google Scholar

[10]

K. Ruan and M. Fukushima, Robust portfolio selection with a combined WCVaR and factor model, J. Ind. Manag. Optim., 8 (2012), 343-362.  doi: 10.3934/jimo.2012.8.343.  Google Scholar

[11]

K. Schottle and R. Werner, Robustness properties of mean-variance portfolios, Optimization, 58 (2009), 641-663.  doi: 10.1080/02331930902819220.  Google Scholar

[12]

H. SoleimaniH. R. Golmakani and M. H. Salimi, Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm, Expert Systems with Appl., 36 (2009), 5058-5063.  doi: 10.1016/j.eswa.2008.06.007.  Google Scholar

[13]

Q. Wang and H. Sun, Sparse Markowitz portfolio selection by using stochastic linear complementarity approach, J. Ind. Manag. Optim., 14 (2018), 541-559.  doi: 10.3934/jimo.2017059.  Google Scholar

[14]

Z. Wang and S. Liu, Multi-period mean-variance portfolio selection with fixed and proportional transaction costs, J. Ind. Manag. Optim., 9 (2013), 643-657.  doi: 10.3934/jimo.2013.9.643.  Google Scholar

[15]

C. WuK. L. Teo and S. Wu, Min-max optimal control of linear systems with uncertainty and terminal state constraints, Automatica J. IFAC, 49 (2013), 1809-1815.  doi: 10.1016/j.automatica.2013.02.052.  Google Scholar

[16]

P. XidonasG. MavrotasC. Hassapis and C. Zopounidis, Robust multiobjective portfolio optimization: A minimax regret approach, European J. Oper. Res., 262 (2017), 299-305.  doi: 10.1016/j.ejor.2017.03.041.  Google Scholar

[17]

L. YiZ. F. Li and D. Li, Multi-period portfolio selection for asset-liability management with uncertain investment horizon, J. Ind. Manag. Optim., 4 (2008), 535-552.  doi: 10.3934/jimo.2008.4.535.  Google Scholar

[18]

N. Zhang, A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems, J. Ind. Manag. Optim., (2018). doi: 10.3934/jimo.2018189.  Google Scholar

[19]

P. Zhang, Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection, J. Ind. Manag. Optim., 15 (2019), 537-564.  doi: 10.3934/jimo.2018056.  Google Scholar

[20]

C. ZhaoC. WuJ. ChaiX. WangX. YangJ. M. Lee and M. J. Kim, Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty, Appl. Soft Comput., 55 (2017), 549-564.  doi: 10.1016/j.asoc.2017.02.009.  Google Scholar

show all references

References:
[1]

A. Ben-Tal and A. Nemirovski, Robust optimization-methodology and applications, Math. Program., 92 (2002), 453-480.  doi: 10.1007/s101070100286.  Google Scholar

[2]

X. CuiX. Sun and D. Sha, An empirical study on discrete optimization models for portfolio selection, J. Ind. Manag. Optim., 5 (2009), 33-46.  doi: 10.3934/jimo.2009.5.33.  Google Scholar

[3]

K. DebA. PratapS. Agarwal and T. A. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Comput., 6 (2002), 182-197.  doi: 10.1109/4235.996017.  Google Scholar

[4]

D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper. Res., 28 (2003), 1-38.  doi: 10.1287/moor.28.1.1.14260.  Google Scholar

[5]

D. HuangS. ZhuF. J. Fabozzi and M. Fukushima, Portfolio selection under distributional uncertainty: A relative robust CVaR approach, European J. Oper. Res., 203 (2010), 185-194.  doi: 10.1016/j.ejor.2009.07.010.  Google Scholar

[6]

K. Khalili-Damghani and M. Amiri, Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA, Reliability Engineering and System Safety, 103 (2012), 35-44.  doi: 10.1016/j.ress.2012.03.006.  Google Scholar

[7]

C. C. Lin and Y. T. Liu, Genetic algorithms for portfolio selection problems with minimum transaction lots, European J. Oper. Res., 185 (2008), 393-404.  doi: 10.1016/j.ejor.2006.12.024.  Google Scholar

[8]

H. Markowitz, Portfolio Selection: Efficient Diversification of Investments, John Wiley & Sons, Inc., New York, 1959.  Google Scholar

[9]

R. T. Marler and J. S. Arora, The weighted sum method for multi-objective optimization: New insights, Struct. Multidiscip. Optim., 41 (2010), 853-862.  doi: 10.1007/s00158-009-0460-7.  Google Scholar

[10]

K. Ruan and M. Fukushima, Robust portfolio selection with a combined WCVaR and factor model, J. Ind. Manag. Optim., 8 (2012), 343-362.  doi: 10.3934/jimo.2012.8.343.  Google Scholar

[11]

K. Schottle and R. Werner, Robustness properties of mean-variance portfolios, Optimization, 58 (2009), 641-663.  doi: 10.1080/02331930902819220.  Google Scholar

[12]

H. SoleimaniH. R. Golmakani and M. H. Salimi, Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm, Expert Systems with Appl., 36 (2009), 5058-5063.  doi: 10.1016/j.eswa.2008.06.007.  Google Scholar

[13]

Q. Wang and H. Sun, Sparse Markowitz portfolio selection by using stochastic linear complementarity approach, J. Ind. Manag. Optim., 14 (2018), 541-559.  doi: 10.3934/jimo.2017059.  Google Scholar

[14]

Z. Wang and S. Liu, Multi-period mean-variance portfolio selection with fixed and proportional transaction costs, J. Ind. Manag. Optim., 9 (2013), 643-657.  doi: 10.3934/jimo.2013.9.643.  Google Scholar

[15]

C. WuK. L. Teo and S. Wu, Min-max optimal control of linear systems with uncertainty and terminal state constraints, Automatica J. IFAC, 49 (2013), 1809-1815.  doi: 10.1016/j.automatica.2013.02.052.  Google Scholar

[16]

P. XidonasG. MavrotasC. Hassapis and C. Zopounidis, Robust multiobjective portfolio optimization: A minimax regret approach, European J. Oper. Res., 262 (2017), 299-305.  doi: 10.1016/j.ejor.2017.03.041.  Google Scholar

[17]

L. YiZ. F. Li and D. Li, Multi-period portfolio selection for asset-liability management with uncertain investment horizon, J. Ind. Manag. Optim., 4 (2008), 535-552.  doi: 10.3934/jimo.2008.4.535.  Google Scholar

[18]

N. Zhang, A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems, J. Ind. Manag. Optim., (2018). doi: 10.3934/jimo.2018189.  Google Scholar

[19]

P. Zhang, Chance-constrained multiperiod mean absolute deviation uncertain portfolio selection, J. Ind. Manag. Optim., 15 (2019), 537-564.  doi: 10.3934/jimo.2018056.  Google Scholar

[20]

C. ZhaoC. WuJ. ChaiX. WangX. YangJ. M. Lee and M. J. Kim, Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty, Appl. Soft Comput., 55 (2017), 549-564.  doi: 10.1016/j.asoc.2017.02.009.  Google Scholar

Figure 1.  The variation of $ g(\kappa) $ in terms of $ \kappa $ when $ \lambda = 0.1 $
Figure 2.  The variation of $ g(\kappa) $ in terms of $ \kappa $ when $ \lambda=0.5 $
Figure 3.  The variation of $ g(\kappa) $ in terms of $ \kappa $ when $ \lambda = 0.9 $
Figure 4.  The variation of $ f_{\lambda}(\Delta w_t, \kappa^*) $ in terms of $ \delta $ when $ \lambda = 0.1 $
Figure 5.  The variation of $ f_{\lambda}(\Delta w_t, \kappa^*) $ in terms of $ \delta $ when $ \lambda = 0.5 $
Figure 6.  The variation of $ f_{\lambda}(\Delta w_t, \kappa^*) $ in terms of $ \delta $ when $ \lambda = 0.9 $
Figure 7.  The variation of $ f_{\lambda}(\Delta w_t, \kappa^*) $ in terms of $ \varsigma $ when $ \lambda = 0.5 $
Figure 8.  The pareton front with $ \delta = 1 $
Figure 9.  The pareton front with $ \delta = 5 $
Figure 10.  The pareton front with $ \delta = 10 $
Table 1.  Solution with five period; $ \varsigma = 0.001, \delta = 0.01 $
$ k_1 $ $ k_2 $ $ k_3 $ $ k_4 $ $ k_5 $
$ \Delta w_1 $ 1.6062540e+002 1.6005381e+002 1.5941714e+002 1.5883923e+002 1.5824019e+002
$ \Delta w_2 $ -4.3718793e+001 -4.3458314e+001 -4.3193335e+001 -4.2953594e+001 -4.2647292e+001
$ \Delta w_3 $ -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
$ \Delta w_4 $ -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
$ \Delta w_5 $ 1.9724480e+003 1.9722713e+003 1.9720766e+003 1.9718941e+003 1.9717006e+003
$ \Delta w_6 $ -1.3675740e+002 -1.3651295e+002 -1.3620477e+002 -1.3596164e+002 -1.3572250e+002
$ \Delta w_7 $ -9.7855928e+002 -9.7836228e+002 -9.7827192e+002 -9.7813905e+002 -9.7802742e+002
$ \Delta w_8 $ -4.6542445e+002 -4.6521487e+002 -4.6500508e+002 -4.6479322e+002 -4.6454631e+002
$ \Delta w_9 $ 1.5230230e+003 1.5227606e+003 1.5225158e+003 1.5222595e+003 1.5219708e+003
$ \Delta w_{10} $ -3.8955914e+001 -3.8854705e+001 -3.8649778e+001 -3.8458643e+001 -3.8279222e+001
$ k_1 $ $ k_2 $ $ k_3 $ $ k_4 $ $ k_5 $
$ \Delta w_1 $ 1.6062540e+002 1.6005381e+002 1.5941714e+002 1.5883923e+002 1.5824019e+002
$ \Delta w_2 $ -4.3718793e+001 -4.3458314e+001 -4.3193335e+001 -4.2953594e+001 -4.2647292e+001
$ \Delta w_3 $ -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
$ \Delta w_4 $ -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
$ \Delta w_5 $ 1.9724480e+003 1.9722713e+003 1.9720766e+003 1.9718941e+003 1.9717006e+003
$ \Delta w_6 $ -1.3675740e+002 -1.3651295e+002 -1.3620477e+002 -1.3596164e+002 -1.3572250e+002
$ \Delta w_7 $ -9.7855928e+002 -9.7836228e+002 -9.7827192e+002 -9.7813905e+002 -9.7802742e+002
$ \Delta w_8 $ -4.6542445e+002 -4.6521487e+002 -4.6500508e+002 -4.6479322e+002 -4.6454631e+002
$ \Delta w_9 $ 1.5230230e+003 1.5227606e+003 1.5225158e+003 1.5222595e+003 1.5219708e+003
$ \Delta w_{10} $ -3.8955914e+001 -3.8854705e+001 -3.8649778e+001 -3.8458643e+001 -3.8279222e+001
Table 2.  Solution with five period; $ \varsigma = 0.01, \delta = 0.01 $
$ k_1 $ $ k_2 $ $ k_3 $ $ k_4 $ $ k_5 $
$ \Delta w_1 $ 2.1589291e-002 -3.4351365e-002 5.7805964e-002 2.3686226e-003 1.0158904e-003
$ \Delta w_2 $ -2.8283011e-001 -2.7323758e-004 1.6033220e-003 -3.5364786e-003 -2.6401259e-004
$ \Delta w_3 $ -3.3036266e+002 -3.5623656e+002 -2.4031564e+002 -3.7257428e+002 -3.4108233e+002
$ \Delta w_4 $ -3.0865547e+002 -2.8842569e+002 -2.9824681e+002 -2.6018254e+002 -2.7533841e+002
$ \Delta w_5 $ 7.0391477e+002 6.9146259e+002 6.8271055e+002 6.6623463e+002 6.5626173e+002
$ \Delta w_6 $ -2.7364462e-002 -3.5663105e-002 -4.9939414e-002 1.0528198e-003 -3.5473078e-001
$ \Delta w_7 $ -1.3859574e+002 -1.1951280e+002 -2.1609022e+002 -1.0360357e+002 -1.0937146e+002
$ \Delta w_8 $ -1.1308908e-001 -2.4663699e-003 -2.2421419e-003 -7.7830259e-003 -1.7166429e-007
$ \Delta w_9 $ 2.1891752e-003 1.6847602e-007 5.8640523e-002 3.0980424e-003 7.3055641e-001
$ \Delta w_{10} $ -2.8203111e-007 -3.2609527e-004 -7.4650111e-008 -1.1673710e-006 -3.2439030e-003
$ k_1 $ $ k_2 $ $ k_3 $ $ k_4 $ $ k_5 $
$ \Delta w_1 $ 2.1589291e-002 -3.4351365e-002 5.7805964e-002 2.3686226e-003 1.0158904e-003
$ \Delta w_2 $ -2.8283011e-001 -2.7323758e-004 1.6033220e-003 -3.5364786e-003 -2.6401259e-004
$ \Delta w_3 $ -3.3036266e+002 -3.5623656e+002 -2.4031564e+002 -3.7257428e+002 -3.4108233e+002
$ \Delta w_4 $ -3.0865547e+002 -2.8842569e+002 -2.9824681e+002 -2.6018254e+002 -2.7533841e+002
$ \Delta w_5 $ 7.0391477e+002 6.9146259e+002 6.8271055e+002 6.6623463e+002 6.5626173e+002
$ \Delta w_6 $ -2.7364462e-002 -3.5663105e-002 -4.9939414e-002 1.0528198e-003 -3.5473078e-001
$ \Delta w_7 $ -1.3859574e+002 -1.1951280e+002 -2.1609022e+002 -1.0360357e+002 -1.0937146e+002
$ \Delta w_8 $ -1.1308908e-001 -2.4663699e-003 -2.2421419e-003 -7.7830259e-003 -1.7166429e-007
$ \Delta w_9 $ 2.1891752e-003 1.6847602e-007 5.8640523e-002 3.0980424e-003 7.3055641e-001
$ \Delta w_{10} $ -2.8203111e-007 -3.2609527e-004 -7.4650111e-008 -1.1673710e-006 -3.2439030e-003
Table 3.  Solution with five period; $ \varsigma = 0.01, \delta = 0.1 $
$ k_1 $ $ k_2 $ $ k_3 $ $ k_4 $ $ k_5 $
$ \Delta w_1 $ -5.4467604e-002 -7.0948978e-007 -2.2561076e-004 -1.0737564e-002 -1.6291721e-004
$ \Delta w_2 $ -1.6419802e-003 -5.6357371e-007 -7.4291123e-003 4.3365254e-003 -2.9140832e-004
$ \Delta w_3 $ -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
$ \Delta w_4 $ -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
$ \Delta w_5 $ 1.7420318e+003 1.7397785e+003 1.7370980e+003 1.7349762e+003 1.7353447e+003
$ \Delta w_6 $ -9.7249593e-008 -3.9907242e-002 -1.8502745e-007 -4.0113434e-002 -3.8173914e-004
$ \Delta w_7 $ -7.9037071e+002 -7.9581203e+002 -7.9336516e+002 -7.8689932e+002 -7.9102920e+002
$ \Delta w_8 $ -2.1545195e+002 -2.0339581e+002 -2.0451219e+002 -2.0476930e+002 -1.9763968e+002
$ \Delta w_9 $ 1.2043583e+003 1.2000782e+003 1.2014231e+003 1.1974970e+003 1.1941434e+003
$ \Delta w_{10} $ -3.4352764e-002 -2.3689203e-007 -1.2659914e-004 -1.2481443e-007 -2.0840295e-007
$ k_1 $ $ k_2 $ $ k_3 $ $ k_4 $ $ k_5 $
$ \Delta w_1 $ -5.4467604e-002 -7.0948978e-007 -2.2561076e-004 -1.0737564e-002 -1.6291721e-004
$ \Delta w_2 $ -1.6419802e-003 -5.6357371e-007 -7.4291123e-003 4.3365254e-003 -2.9140832e-004
$ \Delta w_3 $ -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
$ \Delta w_4 $ -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003 -1.0000000e+003
$ \Delta w_5 $ 1.7420318e+003 1.7397785e+003 1.7370980e+003 1.7349762e+003 1.7353447e+003
$ \Delta w_6 $ -9.7249593e-008 -3.9907242e-002 -1.8502745e-007 -4.0113434e-002 -3.8173914e-004
$ \Delta w_7 $ -7.9037071e+002 -7.9581203e+002 -7.9336516e+002 -7.8689932e+002 -7.9102920e+002
$ \Delta w_8 $ -2.1545195e+002 -2.0339581e+002 -2.0451219e+002 -2.0476930e+002 -1.9763968e+002
$ \Delta w_9 $ 1.2043583e+003 1.2000782e+003 1.2014231e+003 1.1974970e+003 1.1941434e+003
$ \Delta w_{10} $ -3.4352764e-002 -2.3689203e-007 -1.2659914e-004 -1.2481443e-007 -2.0840295e-007
[1]

Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2018177

[2]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[3]

Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

[4]

Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial & Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453

[5]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[6]

Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068

[7]

Henri Bonnel, Ngoc Sang Pham. Nonsmooth optimization over the (weakly or properly) Pareto set of a linear-quadratic multi-objective control problem: Explicit optimality conditions. Journal of Industrial & Management Optimization, 2011, 7 (4) : 789-809. doi: 10.3934/jimo.2011.7.789

[8]

Xueting Cui, Xiaoling Sun, Dan Sha. An empirical study on discrete optimization models for portfolio selection. Journal of Industrial & Management Optimization, 2009, 5 (1) : 33-46. doi: 10.3934/jimo.2009.5.33

[9]

Masoud Mohammadzadeh, Alireza Arshadi Khamseh, Mohammad Mohammadi. A multi-objective integrated model for closed-loop supply chain configuration and supplier selection considering uncertain demand and different performance levels. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1041-1064. doi: 10.3934/jimo.2016061

[10]

Alireza Goli, Hasan Khademi Zare, Reza Tavakkoli-Moghaddam, Ahmad Sadeghieh. Application of robust optimization for a product portfolio problem using an invasive weed optimization algorithm. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 187-209. doi: 10.3934/naco.2019014

[11]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019109

[12]

Ke Ruan, Masao Fukushima. Robust portfolio selection with a combined WCVaR and factor model. Journal of Industrial & Management Optimization, 2012, 8 (2) : 343-362. doi: 10.3934/jimo.2012.8.343

[13]

Yufei Sun, Ee Ling Grace Aw, Bin Li, Kok Lay Teo, Jie Sun. CVaR-based robust models for portfolio selection. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-11. doi: 10.3934/jimo.2019032

[14]

Dušan M. Stipanović, Claire J. Tomlin, George Leitmann. A note on monotone approximations of minimum and maximum functions and multi-objective problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 487-493. doi: 10.3934/naco.2011.1.487

[15]

Hamed Fazlollahtabar, Mohammad Saidi-Mehrabad. Optimizing multi-objective decision making having qualitative evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 747-762. doi: 10.3934/jimo.2015.11.747

[16]

Chuangwei Lin, Li Zeng, Huiling Wu. Multi-period portfolio optimization in a defined contribution pension plan during the decumulation phase. Journal of Industrial & Management Optimization, 2019, 15 (1) : 401-427. doi: 10.3934/jimo.2018059

[17]

Yue Qi, Zhihao Wang, Su Zhang. On analyzing and detecting multiple optima of portfolio optimization. Journal of Industrial & Management Optimization, 2018, 14 (1) : 309-323. doi: 10.3934/jimo.2017048

[18]

Tao Pang, Azmat Hussain. An infinite time horizon portfolio optimization model with delays. Mathematical Control & Related Fields, 2016, 6 (4) : 629-651. doi: 10.3934/mcrf.2016018

[19]

Yufei Sun, Grace Aw, Kok Lay Teo, Guanglu Zhou. Portfolio optimization using a new probabilistic risk measure. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1275-1283. doi: 10.3934/jimo.2015.11.1275

[20]

Zhifeng Dai, Fenghua Wen. A generalized approach to sparse and stable portfolio optimization problem. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1651-1666. doi: 10.3934/jimo.2018025

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (23)
  • HTML views (28)
  • Cited by (0)

Other articles
by authors

[Back to Top]