doi: 10.3934/jimo.2019132

Finite horizon portfolio selection problems with stochastic borrowing constraints

Department of Applied Mathematics & Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea

* Corresponding author: Junkee Jeon

Received  February 2019 Revised  April 2019 Published  October 2019

Fund Project: The first author is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Grant No. NRF-2017R1C1B1001811).

In this paper we investigate the optimal consumption and investment problem with stochastic borrowing constraints for a finitely lived agent. To be specific, she faces a credit limit which is a constant fraction of the present value of her stochastic labor income at each time. By using the martingale approach and transformation into an infinite series of optimal stopping problems which has the same characteristic as finding the optimal exercise time of an American option. We recover the value function by establishing a duality relationship and obtain the integral equation representation solution for the optimal consumption and portfolio strategies. Moreover, we provide some numerical illustrations for optimal consumption and investment policies.

Citation: Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019132
References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, 1964.  Google Scholar

[2]

S. AhnK. J. Choi and B. H. Lim, Optimal consumption and investment under time-varying liquidity constraints, J. Financial and Quantitative Anal., 54 (2019), 1643-1681.  doi: 10.1017/S0022109018001047.  Google Scholar

[3]

A. BensoussanB. G. Jang and S. Park, Unemployment risks and optimal retirement in an incomplete market, Oper. Res., 64 (2016), 1015-1032.  doi: 10.1287/opre.2016.1503.  Google Scholar

[4]

K. Choi, K. Koo, B. H. Lim and J. Yoo, Limited commitment, business cycle, and portfolio selection, preprint. Available at SSRN: https://ssrn.com/abstract=2560607. doi: 10.2139/ssrn.3230235.  Google Scholar

[5]

K. ChoiG. Shim and Y. Shin, Optimal portfolio, consumption-leisure and retirement choice problem with CES utility, Math. Finance, 18 (2008), 445-472.  doi: 10.1111/j.1467-9965.2008.00341.x.  Google Scholar

[6]

J. F. CoccoF. J. Gomes and P. J. Maenhout, Consumption and portfolio choice over the life cycle, Review of Financial Studies, 18 (2005), 491-533.  doi: 10.1093/rfs/hhi017.  Google Scholar

[7]

J. Cox and C. Huang, Optimal consumption and portfolio polices when asset prices follow a diffusion process, J. Econom. Theory, 49 (1989), 33-83.  doi: 10.1016/0022-0531(89)90067-7.  Google Scholar

[8]

P. Dybvig and H. Liu, Lifetime consumption and investment: Retirement and constrained borrowing, J. Econom. Theory, 145 (2010), 885-907.  doi: 10.1016/j.jet.2009.08.003.  Google Scholar

[9]

P. Dybvig and C. Rogers, High hopes and disappointment, preprint. Google Scholar

[10]

M. El Karoui and M. Jeanblanc-Picqué, Optimization of consumption with labor income, Finance and Stochastics, 2 (1998), 409-440.  doi: 10.1007/s007800050048.  Google Scholar

[11]

E. Farhi and S. Panageas, Saving and investing for early retirement: A theoretical analysis, J. Financial Econom., 83 (2007), 87-121.   Google Scholar

[12]

A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Functional Analysis, 18 (1975), 151-176.  doi: 10.1016/0022-1236(75)90022-1.  Google Scholar

[13]

A. Friedman, Variational Principles and Free-boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982.  Google Scholar

[14]

J. Harrison, Brownian motion and stochastic flow systems, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1985.  Google Scholar

[15]

H. He and H. Pagés, Labor income, borrowing constraints, and equilibrium asset prices, Econom. Theory, 3 (1993), 663-696.  doi: 10.1007/BF01210265.  Google Scholar

[16]

J. Z. HuangM. G. Subrahmanyam and G. G. Yu, Pricing and hedging American options: A recursive integration method, Review of Financial Studies, 9 (1996), 277-300.  doi: 10.1093/rfs/9.1.277.  Google Scholar

[17]

I. KaratzasJ. Lehoczky and S. Shreve, Optimal portfolio and consumption decisions for a ``small investor" on a finite horizon, SIAM J. Control Optim., 25 (1987), 1557-1586.  doi: 10.1137/0325086.  Google Scholar

[18]

I. Karatzas and S. Shreve, Methods of Mathematical Finance, Applications of Mathematics, 39, Springer-Verlag, New York, 1998. doi: 10.1007/b98840.  Google Scholar

[19]

H. Koo, Consumption and portfolio selection with labor income: A continuous time approach, Math. Finance, 8 (1996), 49-65.  doi: 10.1111/1467-9965.00044.  Google Scholar

[20]

N. V. Krylov, Controlled Diffusion Processes, Applications of Mathematics, Springer-Verlag, New York, 1980.  Google Scholar

[21]

H. K. Liu, Properties of American volatility options in the mean-reverting $3/2$ volatility model, SIAM J. Financial Math., 6 (2015), 53-65.  doi: 10.1137/130924573.  Google Scholar

[22]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Econom. and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[23]

R. Myneni, The pricing of the American option, Ann. Appl. Probab., 2 (1992), 1-23.  doi: 10.1214/aoap/1177005768.  Google Scholar

[24]

S. Park and B. G. Jang, Optimal retirement strategy with a negative wealth constraint, Oper. Res. Lett., 42 (2014), 208-212.  doi: 10.1016/j.orl.2014.02.005.  Google Scholar

[25]

G. Peskir, On the American option problem, Math. Finance, 15 (2005), 169-181.  doi: 10.1111/j.0960-1627.2005.00214.x.  Google Scholar

[26]

Z. Yang and H. Koo, Optimal consumption and portfolio selection with early retirement options, Math. Oper. Res., 43 (2018), 1378-1404.  doi: 10.1287/moor.2017.0909.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, 1964.  Google Scholar

[2]

S. AhnK. J. Choi and B. H. Lim, Optimal consumption and investment under time-varying liquidity constraints, J. Financial and Quantitative Anal., 54 (2019), 1643-1681.  doi: 10.1017/S0022109018001047.  Google Scholar

[3]

A. BensoussanB. G. Jang and S. Park, Unemployment risks and optimal retirement in an incomplete market, Oper. Res., 64 (2016), 1015-1032.  doi: 10.1287/opre.2016.1503.  Google Scholar

[4]

K. Choi, K. Koo, B. H. Lim and J. Yoo, Limited commitment, business cycle, and portfolio selection, preprint. Available at SSRN: https://ssrn.com/abstract=2560607. doi: 10.2139/ssrn.3230235.  Google Scholar

[5]

K. ChoiG. Shim and Y. Shin, Optimal portfolio, consumption-leisure and retirement choice problem with CES utility, Math. Finance, 18 (2008), 445-472.  doi: 10.1111/j.1467-9965.2008.00341.x.  Google Scholar

[6]

J. F. CoccoF. J. Gomes and P. J. Maenhout, Consumption and portfolio choice over the life cycle, Review of Financial Studies, 18 (2005), 491-533.  doi: 10.1093/rfs/hhi017.  Google Scholar

[7]

J. Cox and C. Huang, Optimal consumption and portfolio polices when asset prices follow a diffusion process, J. Econom. Theory, 49 (1989), 33-83.  doi: 10.1016/0022-0531(89)90067-7.  Google Scholar

[8]

P. Dybvig and H. Liu, Lifetime consumption and investment: Retirement and constrained borrowing, J. Econom. Theory, 145 (2010), 885-907.  doi: 10.1016/j.jet.2009.08.003.  Google Scholar

[9]

P. Dybvig and C. Rogers, High hopes and disappointment, preprint. Google Scholar

[10]

M. El Karoui and M. Jeanblanc-Picqué, Optimization of consumption with labor income, Finance and Stochastics, 2 (1998), 409-440.  doi: 10.1007/s007800050048.  Google Scholar

[11]

E. Farhi and S. Panageas, Saving and investing for early retirement: A theoretical analysis, J. Financial Econom., 83 (2007), 87-121.   Google Scholar

[12]

A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Functional Analysis, 18 (1975), 151-176.  doi: 10.1016/0022-1236(75)90022-1.  Google Scholar

[13]

A. Friedman, Variational Principles and Free-boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982.  Google Scholar

[14]

J. Harrison, Brownian motion and stochastic flow systems, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1985.  Google Scholar

[15]

H. He and H. Pagés, Labor income, borrowing constraints, and equilibrium asset prices, Econom. Theory, 3 (1993), 663-696.  doi: 10.1007/BF01210265.  Google Scholar

[16]

J. Z. HuangM. G. Subrahmanyam and G. G. Yu, Pricing and hedging American options: A recursive integration method, Review of Financial Studies, 9 (1996), 277-300.  doi: 10.1093/rfs/9.1.277.  Google Scholar

[17]

I. KaratzasJ. Lehoczky and S. Shreve, Optimal portfolio and consumption decisions for a ``small investor" on a finite horizon, SIAM J. Control Optim., 25 (1987), 1557-1586.  doi: 10.1137/0325086.  Google Scholar

[18]

I. Karatzas and S. Shreve, Methods of Mathematical Finance, Applications of Mathematics, 39, Springer-Verlag, New York, 1998. doi: 10.1007/b98840.  Google Scholar

[19]

H. Koo, Consumption and portfolio selection with labor income: A continuous time approach, Math. Finance, 8 (1996), 49-65.  doi: 10.1111/1467-9965.00044.  Google Scholar

[20]

N. V. Krylov, Controlled Diffusion Processes, Applications of Mathematics, Springer-Verlag, New York, 1980.  Google Scholar

[21]

H. K. Liu, Properties of American volatility options in the mean-reverting $3/2$ volatility model, SIAM J. Financial Math., 6 (2015), 53-65.  doi: 10.1137/130924573.  Google Scholar

[22]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Econom. and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[23]

R. Myneni, The pricing of the American option, Ann. Appl. Probab., 2 (1992), 1-23.  doi: 10.1214/aoap/1177005768.  Google Scholar

[24]

S. Park and B. G. Jang, Optimal retirement strategy with a negative wealth constraint, Oper. Res. Lett., 42 (2014), 208-212.  doi: 10.1016/j.orl.2014.02.005.  Google Scholar

[25]

G. Peskir, On the American option problem, Math. Finance, 15 (2005), 169-181.  doi: 10.1111/j.0960-1627.2005.00214.x.  Google Scholar

[26]

Z. Yang and H. Koo, Optimal consumption and portfolio selection with early retirement options, Math. Oper. Res., 43 (2018), 1378-1404.  doi: 10.1287/moor.2017.0909.  Google Scholar

Figure 1.  Free boundary $ z^{\star}(t) $. Parameter values are given by $ \mu = 0.05, \sigma = 0.2, r = 0.01, \beta = 0.05, \gamma = 2, \mu_{I} = 0.012, \sigma_{I} = 0.1, \nu = 0.3 \;\;\mbox{and}\; T = 10 $
Figure 2.  Simulated paths of wealth to income ratio $ X^{*}/I $, portfolio to income ratio $ \pi^{*}/I $, consumption to income ratio $ c^{*}/I $, the process $ y^{*}D^{*} $, and the process $ D^{*} $. Parameter values are given by $ \mu = 0.05, \sigma = 0.2, r = 0.01, \beta = 0.05, \gamma = 2, \mu_{I} = 0.012, \sigma_{I} = 0.1, \nu = 0.3 \;\;\mbox{and}\; T = 30 $
[1]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[4]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[5]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[6]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[7]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[8]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[11]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[12]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[13]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[14]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[15]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[16]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[17]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[18]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[19]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[20]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (89)
  • HTML views (388)
  • Cited by (0)

Other articles
by authors

[Back to Top]