doi: 10.3934/jimo.2019132

Finite horizon portfolio selection problems with stochastic borrowing constraints

Department of Applied Mathematics & Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea

* Corresponding author: Junkee Jeon

Received  February 2019 Revised  April 2019 Published  October 2019

Fund Project: The first author is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Grant No. NRF-2017R1C1B1001811)

In this paper we investigate the optimal consumption and investment problem with stochastic borrowing constraints for a finitely lived agent. To be specific, she faces a credit limit which is a constant fraction of the present value of her stochastic labor income at each time. By using the martingale approach and transformation into an infinite series of optimal stopping problems which has the same characteristic as finding the optimal exercise time of an American option. We recover the value function by establishing a duality relationship and obtain the integral equation representation solution for the optimal consumption and portfolio strategies. Moreover, we provide some numerical illustrations for optimal consumption and investment policies.

Citation: Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019132
References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, 1964.  Google Scholar

[2]

S. AhnK. J. Choi and B. H. Lim, Optimal consumption and investment under time-varying liquidity constraints, J. Financial and Quantitative Anal., 54 (2019), 1643-1681.  doi: 10.1017/S0022109018001047.  Google Scholar

[3]

A. BensoussanB. G. Jang and S. Park, Unemployment risks and optimal retirement in an incomplete market, Oper. Res., 64 (2016), 1015-1032.  doi: 10.1287/opre.2016.1503.  Google Scholar

[4]

K. Choi, K. Koo, B. H. Lim and J. Yoo, Limited commitment, business cycle, and portfolio selection, preprint. Available at SSRN: https://ssrn.com/abstract=2560607. doi: 10.2139/ssrn.3230235.  Google Scholar

[5]

K. ChoiG. Shim and Y. Shin, Optimal portfolio, consumption-leisure and retirement choice problem with CES utility, Math. Finance, 18 (2008), 445-472.  doi: 10.1111/j.1467-9965.2008.00341.x.  Google Scholar

[6]

J. F. CoccoF. J. Gomes and P. J. Maenhout, Consumption and portfolio choice over the life cycle, Review of Financial Studies, 18 (2005), 491-533.  doi: 10.1093/rfs/hhi017.  Google Scholar

[7]

J. Cox and C. Huang, Optimal consumption and portfolio polices when asset prices follow a diffusion process, J. Econom. Theory, 49 (1989), 33-83.  doi: 10.1016/0022-0531(89)90067-7.  Google Scholar

[8]

P. Dybvig and H. Liu, Lifetime consumption and investment: Retirement and constrained borrowing, J. Econom. Theory, 145 (2010), 885-907.  doi: 10.1016/j.jet.2009.08.003.  Google Scholar

[9]

P. Dybvig and C. Rogers, High hopes and disappointment, preprint. Google Scholar

[10]

M. El Karoui and M. Jeanblanc-Picqué, Optimization of consumption with labor income, Finance and Stochastics, 2 (1998), 409-440.  doi: 10.1007/s007800050048.  Google Scholar

[11]

E. Farhi and S. Panageas, Saving and investing for early retirement: A theoretical analysis, J. Financial Econom., 83 (2007), 87-121.   Google Scholar

[12]

A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Functional Analysis, 18 (1975), 151-176.  doi: 10.1016/0022-1236(75)90022-1.  Google Scholar

[13]

A. Friedman, Variational Principles and Free-boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982.  Google Scholar

[14]

J. Harrison, Brownian motion and stochastic flow systems, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1985.  Google Scholar

[15]

H. He and H. Pagés, Labor income, borrowing constraints, and equilibrium asset prices, Econom. Theory, 3 (1993), 663-696.  doi: 10.1007/BF01210265.  Google Scholar

[16]

J. Z. HuangM. G. Subrahmanyam and G. G. Yu, Pricing and hedging American options: A recursive integration method, Review of Financial Studies, 9 (1996), 277-300.  doi: 10.1093/rfs/9.1.277.  Google Scholar

[17]

I. KaratzasJ. Lehoczky and S. Shreve, Optimal portfolio and consumption decisions for a ``small investor" on a finite horizon, SIAM J. Control Optim., 25 (1987), 1557-1586.  doi: 10.1137/0325086.  Google Scholar

[18]

I. Karatzas and S. Shreve, Methods of Mathematical Finance, Applications of Mathematics, 39, Springer-Verlag, New York, 1998. doi: 10.1007/b98840.  Google Scholar

[19]

H. Koo, Consumption and portfolio selection with labor income: A continuous time approach, Math. Finance, 8 (1996), 49-65.  doi: 10.1111/1467-9965.00044.  Google Scholar

[20]

N. V. Krylov, Controlled Diffusion Processes, Applications of Mathematics, Springer-Verlag, New York, 1980.  Google Scholar

[21]

H. K. Liu, Properties of American volatility options in the mean-reverting $3/2$ volatility model, SIAM J. Financial Math., 6 (2015), 53-65.  doi: 10.1137/130924573.  Google Scholar

[22]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Econom. and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[23]

R. Myneni, The pricing of the American option, Ann. Appl. Probab., 2 (1992), 1-23.  doi: 10.1214/aoap/1177005768.  Google Scholar

[24]

S. Park and B. G. Jang, Optimal retirement strategy with a negative wealth constraint, Oper. Res. Lett., 42 (2014), 208-212.  doi: 10.1016/j.orl.2014.02.005.  Google Scholar

[25]

G. Peskir, On the American option problem, Math. Finance, 15 (2005), 169-181.  doi: 10.1111/j.0960-1627.2005.00214.x.  Google Scholar

[26]

Z. Yang and H. Koo, Optimal consumption and portfolio selection with early retirement options, Math. Oper. Res., 43 (2018), 1378-1404.  doi: 10.1287/moor.2017.0909.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, 1964.  Google Scholar

[2]

S. AhnK. J. Choi and B. H. Lim, Optimal consumption and investment under time-varying liquidity constraints, J. Financial and Quantitative Anal., 54 (2019), 1643-1681.  doi: 10.1017/S0022109018001047.  Google Scholar

[3]

A. BensoussanB. G. Jang and S. Park, Unemployment risks and optimal retirement in an incomplete market, Oper. Res., 64 (2016), 1015-1032.  doi: 10.1287/opre.2016.1503.  Google Scholar

[4]

K. Choi, K. Koo, B. H. Lim and J. Yoo, Limited commitment, business cycle, and portfolio selection, preprint. Available at SSRN: https://ssrn.com/abstract=2560607. doi: 10.2139/ssrn.3230235.  Google Scholar

[5]

K. ChoiG. Shim and Y. Shin, Optimal portfolio, consumption-leisure and retirement choice problem with CES utility, Math. Finance, 18 (2008), 445-472.  doi: 10.1111/j.1467-9965.2008.00341.x.  Google Scholar

[6]

J. F. CoccoF. J. Gomes and P. J. Maenhout, Consumption and portfolio choice over the life cycle, Review of Financial Studies, 18 (2005), 491-533.  doi: 10.1093/rfs/hhi017.  Google Scholar

[7]

J. Cox and C. Huang, Optimal consumption and portfolio polices when asset prices follow a diffusion process, J. Econom. Theory, 49 (1989), 33-83.  doi: 10.1016/0022-0531(89)90067-7.  Google Scholar

[8]

P. Dybvig and H. Liu, Lifetime consumption and investment: Retirement and constrained borrowing, J. Econom. Theory, 145 (2010), 885-907.  doi: 10.1016/j.jet.2009.08.003.  Google Scholar

[9]

P. Dybvig and C. Rogers, High hopes and disappointment, preprint. Google Scholar

[10]

M. El Karoui and M. Jeanblanc-Picqué, Optimization of consumption with labor income, Finance and Stochastics, 2 (1998), 409-440.  doi: 10.1007/s007800050048.  Google Scholar

[11]

E. Farhi and S. Panageas, Saving and investing for early retirement: A theoretical analysis, J. Financial Econom., 83 (2007), 87-121.   Google Scholar

[12]

A. Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Functional Analysis, 18 (1975), 151-176.  doi: 10.1016/0022-1236(75)90022-1.  Google Scholar

[13]

A. Friedman, Variational Principles and Free-boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982.  Google Scholar

[14]

J. Harrison, Brownian motion and stochastic flow systems, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1985.  Google Scholar

[15]

H. He and H. Pagés, Labor income, borrowing constraints, and equilibrium asset prices, Econom. Theory, 3 (1993), 663-696.  doi: 10.1007/BF01210265.  Google Scholar

[16]

J. Z. HuangM. G. Subrahmanyam and G. G. Yu, Pricing and hedging American options: A recursive integration method, Review of Financial Studies, 9 (1996), 277-300.  doi: 10.1093/rfs/9.1.277.  Google Scholar

[17]

I. KaratzasJ. Lehoczky and S. Shreve, Optimal portfolio and consumption decisions for a ``small investor" on a finite horizon, SIAM J. Control Optim., 25 (1987), 1557-1586.  doi: 10.1137/0325086.  Google Scholar

[18]

I. Karatzas and S. Shreve, Methods of Mathematical Finance, Applications of Mathematics, 39, Springer-Verlag, New York, 1998. doi: 10.1007/b98840.  Google Scholar

[19]

H. Koo, Consumption and portfolio selection with labor income: A continuous time approach, Math. Finance, 8 (1996), 49-65.  doi: 10.1111/1467-9965.00044.  Google Scholar

[20]

N. V. Krylov, Controlled Diffusion Processes, Applications of Mathematics, Springer-Verlag, New York, 1980.  Google Scholar

[21]

H. K. Liu, Properties of American volatility options in the mean-reverting $3/2$ volatility model, SIAM J. Financial Math., 6 (2015), 53-65.  doi: 10.1137/130924573.  Google Scholar

[22]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Econom. and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[23]

R. Myneni, The pricing of the American option, Ann. Appl. Probab., 2 (1992), 1-23.  doi: 10.1214/aoap/1177005768.  Google Scholar

[24]

S. Park and B. G. Jang, Optimal retirement strategy with a negative wealth constraint, Oper. Res. Lett., 42 (2014), 208-212.  doi: 10.1016/j.orl.2014.02.005.  Google Scholar

[25]

G. Peskir, On the American option problem, Math. Finance, 15 (2005), 169-181.  doi: 10.1111/j.0960-1627.2005.00214.x.  Google Scholar

[26]

Z. Yang and H. Koo, Optimal consumption and portfolio selection with early retirement options, Math. Oper. Res., 43 (2018), 1378-1404.  doi: 10.1287/moor.2017.0909.  Google Scholar

Figure 1.  Free boundary $ z^{\star}(t) $. Parameter values are given by $ \mu = 0.05, \sigma = 0.2, r = 0.01, \beta = 0.05, \gamma = 2, \mu_{I} = 0.012, \sigma_{I} = 0.1, \nu = 0.3 \;\;\mbox{and}\; T = 10 $
Figure 2.  Simulated paths of wealth to income ratio $ X^{*}/I $, portfolio to income ratio $ \pi^{*}/I $, consumption to income ratio $ c^{*}/I $, the process $ y^{*}D^{*} $, and the process $ D^{*} $. Parameter values are given by $ \mu = 0.05, \sigma = 0.2, r = 0.01, \beta = 0.05, \gamma = 2, \mu_{I} = 0.012, \sigma_{I} = 0.1, \nu = 0.3 \;\;\mbox{and}\; T = 30 $
[1]

Jingzhen Liu, Ka-Fai Cedric Yiu, Kok Lay Teo. Optimal investment-consumption problem with constraint. Journal of Industrial & Management Optimization, 2013, 9 (4) : 743-768. doi: 10.3934/jimo.2013.9.743

[2]

Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control & Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014

[3]

Liping Pang, Fanyun Meng, Jinhe Wang. Asymptotic convergence of stationary points of stochastic multiobjective programs with parametric variational inequality constraint via SAA approach. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1653-1675. doi: 10.3934/jimo.2018116

[4]

Hui-Qiang Ma, Nan-Jing Huang. Neural network smoothing approximation method for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (2) : 645-660. doi: 10.3934/jimo.2015.11.645

[5]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[6]

Mou-Hsiung Chang, Tao Pang, Moustapha Pemy. Finite difference approximation for stochastic optimal stopping problems with delays. Journal of Industrial & Management Optimization, 2008, 4 (2) : 227-246. doi: 10.3934/jimo.2008.4.227

[7]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[8]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[9]

Lei Sun, Lihong Zhang. Optimal consumption and investment under irrational beliefs. Journal of Industrial & Management Optimization, 2011, 7 (1) : 139-156. doi: 10.3934/jimo.2011.7.139

[10]

Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial & Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795

[11]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

[12]

Yekini Shehu, Olaniyi Iyiola. On a modified extragradient method for variational inequality problem with application to industrial electricity production. Journal of Industrial & Management Optimization, 2019, 15 (1) : 319-342. doi: 10.3934/jimo.2018045

[13]

Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047

[14]

Min Dai, Zhou Yang. A note on finite horizon optimal investment and consumption with transaction costs. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1445-1454. doi: 10.3934/dcdsb.2016005

[15]

Yong Ma, Shiping Shan, Weidong Xu. Optimal investment and consumption in the market with jump risk and capital gains tax. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1937-1953. doi: 10.3934/jimo.2018130

[16]

Jiaqin Wei, Danping Li, Yan Zeng. Robust optimal consumption-investment strategy with non-exponential discounting. Journal of Industrial & Management Optimization, 2020, 16 (1) : 207-230. doi: 10.3934/jimo.2018147

[17]

Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35

[18]

Xiaoshan Chen, Xun Li, Fahuai Yi. Optimal stopping investment with non-smooth utility over an infinite time horizon. Journal of Industrial & Management Optimization, 2019, 15 (1) : 81-96. doi: 10.3934/jimo.2018033

[19]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[20]

Tôn Việt Tạ. Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4507-4542. doi: 10.3934/dcds.2017193

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (17)
  • HTML views (37)
  • Cited by (0)

Other articles
by authors

[Back to Top]