
-
Previous Article
Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model
- JIMO Home
- This Issue
-
Next Article
Loss-averse supply chain decisions with a capital constrained retailer
Finite horizon portfolio selection problems with stochastic borrowing constraints
Department of Applied Mathematics & Institute of Natural Science, Kyung Hee University, Yongin, 17104, Republic of Korea |
In this paper we investigate the optimal consumption and investment problem with stochastic borrowing constraints for a finitely lived agent. To be specific, she faces a credit limit which is a constant fraction of the present value of her stochastic labor income at each time. By using the martingale approach and transformation into an infinite series of optimal stopping problems which has the same characteristic as finding the optimal exercise time of an American option. We recover the value function by establishing a duality relationship and obtain the integral equation representation solution for the optimal consumption and portfolio strategies. Moreover, we provide some numerical illustrations for optimal consumption and investment policies.
References:
[1] |
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, 1964. |
[2] |
S. Ahn, K. J. Choi and B. H. Lim,
Optimal consumption and investment under time-varying liquidity constraints, J. Financial and Quantitative Anal., 54 (2019), 1643-1681.
doi: 10.1017/S0022109018001047. |
[3] |
A. Bensoussan, B. G. Jang and S. Park,
Unemployment risks and optimal retirement in an incomplete market, Oper. Res., 64 (2016), 1015-1032.
doi: 10.1287/opre.2016.1503. |
[4] |
K. Choi, K. Koo, B. H. Lim and J. Yoo, Limited commitment, business cycle, and portfolio selection, preprint. Available at SSRN: https://ssrn.com/abstract=2560607.
doi: 10.2139/ssrn.3230235. |
[5] |
K. Choi, G. Shim and Y. Shin,
Optimal portfolio, consumption-leisure and retirement choice problem with CES utility, Math. Finance, 18 (2008), 445-472.
doi: 10.1111/j.1467-9965.2008.00341.x. |
[6] |
J. F. Cocco, F. J. Gomes and P. J. Maenhout,
Consumption and portfolio choice over the life cycle, Review of Financial Studies, 18 (2005), 491-533.
doi: 10.1093/rfs/hhi017. |
[7] |
J. Cox and C. Huang,
Optimal consumption and portfolio polices when asset prices follow a diffusion process, J. Econom. Theory, 49 (1989), 33-83.
doi: 10.1016/0022-0531(89)90067-7. |
[8] |
P. Dybvig and H. Liu,
Lifetime consumption and investment: Retirement and constrained borrowing, J. Econom. Theory, 145 (2010), 885-907.
doi: 10.1016/j.jet.2009.08.003. |
[9] |
P. Dybvig and C. Rogers, High hopes and disappointment, preprint. Google Scholar |
[10] |
M. El Karoui and M. Jeanblanc-Picqué,
Optimization of consumption with labor income, Finance and Stochastics, 2 (1998), 409-440.
doi: 10.1007/s007800050048. |
[11] |
E. Farhi and S. Panageas, Saving and investing for early retirement: A theoretical analysis, J. Financial Econom., 83 (2007), 87-121. Google Scholar |
[12] |
A. Friedman,
Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Functional Analysis, 18 (1975), 151-176.
doi: 10.1016/0022-1236(75)90022-1. |
[13] |
A. Friedman, Variational Principles and Free-boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. |
[14] |
J. Harrison, Brownian motion and stochastic flow systems, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1985. |
[15] |
H. He and H. Pagés,
Labor income, borrowing constraints, and equilibrium asset prices, Econom. Theory, 3 (1993), 663-696.
doi: 10.1007/BF01210265. |
[16] |
J. Z. Huang, M. G. Subrahmanyam and G. G. Yu,
Pricing and hedging American options: A recursive integration method, Review of Financial Studies, 9 (1996), 277-300.
doi: 10.1093/rfs/9.1.277. |
[17] |
I. Karatzas, J. Lehoczky and S. Shreve,
Optimal portfolio and consumption decisions for a ``small investor" on a finite horizon, SIAM J. Control Optim., 25 (1987), 1557-1586.
doi: 10.1137/0325086. |
[18] |
I. Karatzas and S. Shreve, Methods of Mathematical Finance, Applications of Mathematics, 39, Springer-Verlag, New York, 1998.
doi: 10.1007/b98840. |
[19] |
H. Koo,
Consumption and portfolio selection with labor income: A continuous time approach, Math. Finance, 8 (1996), 49-65.
doi: 10.1111/1467-9965.00044. |
[20] |
N. V. Krylov, Controlled Diffusion Processes, Applications of Mathematics, Springer-Verlag, New York, 1980. |
[21] |
H. K. Liu,
Properties of American volatility options in the mean-reverting $3/2$ volatility model, SIAM J. Financial Math., 6 (2015), 53-65.
doi: 10.1137/130924573. |
[22] |
R. Merton,
Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Econom. and Statistics, 51 (1969), 247-257.
doi: 10.2307/1926560. |
[23] |
R. Myneni,
The pricing of the American option, Ann. Appl. Probab., 2 (1992), 1-23.
doi: 10.1214/aoap/1177005768. |
[24] |
S. Park and B. G. Jang,
Optimal retirement strategy with a negative wealth constraint, Oper. Res. Lett., 42 (2014), 208-212.
doi: 10.1016/j.orl.2014.02.005. |
[25] |
G. Peskir,
On the American option problem, Math. Finance, 15 (2005), 169-181.
doi: 10.1111/j.0960-1627.2005.00214.x. |
[26] |
Z. Yang and H. Koo,
Optimal consumption and portfolio selection with early retirement options, Math. Oper. Res., 43 (2018), 1378-1404.
doi: 10.1287/moor.2017.0909. |
show all references
References:
[1] |
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, 55, 1964. |
[2] |
S. Ahn, K. J. Choi and B. H. Lim,
Optimal consumption and investment under time-varying liquidity constraints, J. Financial and Quantitative Anal., 54 (2019), 1643-1681.
doi: 10.1017/S0022109018001047. |
[3] |
A. Bensoussan, B. G. Jang and S. Park,
Unemployment risks and optimal retirement in an incomplete market, Oper. Res., 64 (2016), 1015-1032.
doi: 10.1287/opre.2016.1503. |
[4] |
K. Choi, K. Koo, B. H. Lim and J. Yoo, Limited commitment, business cycle, and portfolio selection, preprint. Available at SSRN: https://ssrn.com/abstract=2560607.
doi: 10.2139/ssrn.3230235. |
[5] |
K. Choi, G. Shim and Y. Shin,
Optimal portfolio, consumption-leisure and retirement choice problem with CES utility, Math. Finance, 18 (2008), 445-472.
doi: 10.1111/j.1467-9965.2008.00341.x. |
[6] |
J. F. Cocco, F. J. Gomes and P. J. Maenhout,
Consumption and portfolio choice over the life cycle, Review of Financial Studies, 18 (2005), 491-533.
doi: 10.1093/rfs/hhi017. |
[7] |
J. Cox and C. Huang,
Optimal consumption and portfolio polices when asset prices follow a diffusion process, J. Econom. Theory, 49 (1989), 33-83.
doi: 10.1016/0022-0531(89)90067-7. |
[8] |
P. Dybvig and H. Liu,
Lifetime consumption and investment: Retirement and constrained borrowing, J. Econom. Theory, 145 (2010), 885-907.
doi: 10.1016/j.jet.2009.08.003. |
[9] |
P. Dybvig and C. Rogers, High hopes and disappointment, preprint. Google Scholar |
[10] |
M. El Karoui and M. Jeanblanc-Picqué,
Optimization of consumption with labor income, Finance and Stochastics, 2 (1998), 409-440.
doi: 10.1007/s007800050048. |
[11] |
E. Farhi and S. Panageas, Saving and investing for early retirement: A theoretical analysis, J. Financial Econom., 83 (2007), 87-121. Google Scholar |
[12] |
A. Friedman,
Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Functional Analysis, 18 (1975), 151-176.
doi: 10.1016/0022-1236(75)90022-1. |
[13] |
A. Friedman, Variational Principles and Free-boundary Problems, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. |
[14] |
J. Harrison, Brownian motion and stochastic flow systems, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1985. |
[15] |
H. He and H. Pagés,
Labor income, borrowing constraints, and equilibrium asset prices, Econom. Theory, 3 (1993), 663-696.
doi: 10.1007/BF01210265. |
[16] |
J. Z. Huang, M. G. Subrahmanyam and G. G. Yu,
Pricing and hedging American options: A recursive integration method, Review of Financial Studies, 9 (1996), 277-300.
doi: 10.1093/rfs/9.1.277. |
[17] |
I. Karatzas, J. Lehoczky and S. Shreve,
Optimal portfolio and consumption decisions for a ``small investor" on a finite horizon, SIAM J. Control Optim., 25 (1987), 1557-1586.
doi: 10.1137/0325086. |
[18] |
I. Karatzas and S. Shreve, Methods of Mathematical Finance, Applications of Mathematics, 39, Springer-Verlag, New York, 1998.
doi: 10.1007/b98840. |
[19] |
H. Koo,
Consumption and portfolio selection with labor income: A continuous time approach, Math. Finance, 8 (1996), 49-65.
doi: 10.1111/1467-9965.00044. |
[20] |
N. V. Krylov, Controlled Diffusion Processes, Applications of Mathematics, Springer-Verlag, New York, 1980. |
[21] |
H. K. Liu,
Properties of American volatility options in the mean-reverting $3/2$ volatility model, SIAM J. Financial Math., 6 (2015), 53-65.
doi: 10.1137/130924573. |
[22] |
R. Merton,
Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Econom. and Statistics, 51 (1969), 247-257.
doi: 10.2307/1926560. |
[23] |
R. Myneni,
The pricing of the American option, Ann. Appl. Probab., 2 (1992), 1-23.
doi: 10.1214/aoap/1177005768. |
[24] |
S. Park and B. G. Jang,
Optimal retirement strategy with a negative wealth constraint, Oper. Res. Lett., 42 (2014), 208-212.
doi: 10.1016/j.orl.2014.02.005. |
[25] |
G. Peskir,
On the American option problem, Math. Finance, 15 (2005), 169-181.
doi: 10.1111/j.0960-1627.2005.00214.x. |
[26] |
Z. Yang and H. Koo,
Optimal consumption and portfolio selection with early retirement options, Math. Oper. Res., 43 (2018), 1378-1404.
doi: 10.1287/moor.2017.0909. |


[1] |
Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021003 |
[2] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[3] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[4] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[5] |
Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114 |
[6] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[7] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020391 |
[8] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[9] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[10] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[11] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[12] |
Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066 |
[13] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[14] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[15] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[16] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[17] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[18] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[19] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[20] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
2019 Impact Factor: 1.366
Tools
Article outline
Figures and Tables
[Back to Top]