• Previous Article
    A non-zero-sum reinsurance-investment game with delay and asymmetric information
  • JIMO Home
  • This Issue
  • Next Article
    On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set
March  2021, 17(2): 889-908. doi: 10.3934/jimo.2020003

On correlated defaults and incomplete information

1. 

Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong, China

2. 

Corresponding author. Department of Mathematics, Southern University of Science and Technology, Shenzhen, China

3. 

Department of Mathematics, Imperial College, London, SW7 2AZ, UK

Received  June 2018 Revised  July 2019 Published  January 2020

In this paper, we study a continuous time structural asset value model for two correlated firms using a two-dimensional Brownian motion. We consider the situation of incomplete information, where the information set available to the market participants includes the default time of each firm and the periodic asset value reports. In this situation, the default time of each firm becomes a totally inaccessible stopping time to the market participants. The original structural model is first transformed to a reduced-form model. Then the conditional distribution of the default time together with the asset value of each name are derived. We prove the existence of the intensity processes of default times and also give the explicit form of the intensity processes. Numerical studies on the intensities of the two correlated names are conducted for some special cases.

Citation: Wai-Ki Ching, Jia-Wen Gu, Harry Zheng. On correlated defaults and incomplete information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 889-908. doi: 10.3934/jimo.2020003
References:
[1]

M. Abramowitz and I. Stegun (Eds.), Handbook of Mathematical Functions, US Department of Commerce, 1967. Google Scholar

[2]

T. Aven, A theorem for determining the compensator of a counting process, Scandinavian Journal of Statistics, 12 (1985), 69-72.   Google Scholar

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[4]

C. Blanchet-Scalliet, A. Cousin and D. Dorobantu, Hitting time for correlated three-dimensional Brownian motion, working paper, 2013. Google Scholar

[5]

C. Blanchet-Scalliet and F. Patras, Counterparty risk valuation for CDS, Credit Risk Frontiers: Subprime Crisis, Pricing and Hedging, CVA, MBS, Ratings, and Liquidity, WILEY, 2011, 437–456. Google Scholar

[6]

D. Duffie and D. Lando, Term structures and credit spreads with incomplete accounting information, Econometrica, 69 (2001), 633-664.   Google Scholar

[7]

R. J. ElliottM. Jeanblanc and M. Yor, On models of default risk, Mathematical Finance, 10 (2000), 179-195.   Google Scholar

[8]

M. EscobarS. Ferrando and X. Wen, Three dimensional distribution of Brownian motion extrema, Stochastics an International Journal of Probability and Stochastic Processes, 85 (2013), 807-832.  doi: 10.1080/17442508.2012.660942.  Google Scholar

[9]

K. Giesecke, Correlated default with incomplete information, Journal of Banking and Finance, 28 (2004), 1521-1545.   Google Scholar

[10]

K. Giesecke and L. R. Goldberg, Sequential defaults and incomplete information, Journal of Risk, 7 (2004), 1-26.   Google Scholar

[11]

J. GuW. ChingT. Siu and H. Zheng, On pricing basket credit default swaps, Quantitative Finance, 13 (2013), 1845-1854.  doi: 10.1080/14697688.2013.783713.  Google Scholar

[12]

X. GuoR. Jarrow and Y. Zeng, Credit risk models with incomplete information, Mathematics of Operations Research, 34 (2009), 320-332.  doi: 10.1287/moor.1080.0361.  Google Scholar

[13]

M. Harrison, Brownian Motion and Stochastic Flow Systems, John Wiley and Sons, Inc., New York, 1985.  Google Scholar

[14]

S. Iyengar, Hitting lines with two-dimensional Brownian motion, SIAM Journal of Applied Mathematics, 45 (1985), 983-989.  doi: 10.1137/0145060.  Google Scholar

[15]

R. Jarrow and S. Turnbull, Credit Risk: Drawing the Analogy, Risk Magazine, 5, 1992. Google Scholar

[16]

R. Jarrow and S. Turnbull, Pricing options of financial securities subject to default risk, Journal of Finance, 50 (1995), 53-86.   Google Scholar

[17] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, Third edition, Imperial College Press, London, 2012.  doi: 10.1142/p821.  Google Scholar
[18]

S. Kou and H. Zhong, First Passage Times of Two-dimensional Correlated Brownian Motion, presentation at "Nonlinear Expectation, Stochastic Calculus under Knightian Uncertainty, and Related Topics", Institute of Mathematical Sciences, National University of Singapore, Singapore, 3 June - 12 July, 2013. Google Scholar

[19]

R. C. Merton, On the pricing of corporate debt: The risk structure of interest rates, Journal of Finance, 29 (1974), 449-470.  doi: 10.1142/9789814759588_0003.  Google Scholar

[20]

A. Metzler, On the first passage problem for correlated Brownian motion, Statistics and Probability Letters, 80 (2010), 277-284.  doi: 10.1016/j.spl.2009.11.001.  Google Scholar

[21]

L. C. G. Rogers and L. Shepp, The correlation of the maxima of correlated Brownian motions, J. Applied Probability, 43 (2006), 880-883.  doi: 10.1239/jap/1158784954.  Google Scholar

[22]

F. Yu, Correlated defaults in intensity-based models, Mathematical Finance, 17 (2007), 155-173.   Google Scholar

[23]

H. Zheng and L. Jiang, Basket CDS pricing with interacting intensities, Finance and Stochastics, 13 (2009), 445-469.  doi: 10.1007/s00780-009-0091-2.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. Stegun (Eds.), Handbook of Mathematical Functions, US Department of Commerce, 1967. Google Scholar

[2]

T. Aven, A theorem for determining the compensator of a counting process, Scandinavian Journal of Statistics, 12 (1985), 69-72.   Google Scholar

[3]

F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[4]

C. Blanchet-Scalliet, A. Cousin and D. Dorobantu, Hitting time for correlated three-dimensional Brownian motion, working paper, 2013. Google Scholar

[5]

C. Blanchet-Scalliet and F. Patras, Counterparty risk valuation for CDS, Credit Risk Frontiers: Subprime Crisis, Pricing and Hedging, CVA, MBS, Ratings, and Liquidity, WILEY, 2011, 437–456. Google Scholar

[6]

D. Duffie and D. Lando, Term structures and credit spreads with incomplete accounting information, Econometrica, 69 (2001), 633-664.   Google Scholar

[7]

R. J. ElliottM. Jeanblanc and M. Yor, On models of default risk, Mathematical Finance, 10 (2000), 179-195.   Google Scholar

[8]

M. EscobarS. Ferrando and X. Wen, Three dimensional distribution of Brownian motion extrema, Stochastics an International Journal of Probability and Stochastic Processes, 85 (2013), 807-832.  doi: 10.1080/17442508.2012.660942.  Google Scholar

[9]

K. Giesecke, Correlated default with incomplete information, Journal of Banking and Finance, 28 (2004), 1521-1545.   Google Scholar

[10]

K. Giesecke and L. R. Goldberg, Sequential defaults and incomplete information, Journal of Risk, 7 (2004), 1-26.   Google Scholar

[11]

J. GuW. ChingT. Siu and H. Zheng, On pricing basket credit default swaps, Quantitative Finance, 13 (2013), 1845-1854.  doi: 10.1080/14697688.2013.783713.  Google Scholar

[12]

X. GuoR. Jarrow and Y. Zeng, Credit risk models with incomplete information, Mathematics of Operations Research, 34 (2009), 320-332.  doi: 10.1287/moor.1080.0361.  Google Scholar

[13]

M. Harrison, Brownian Motion and Stochastic Flow Systems, John Wiley and Sons, Inc., New York, 1985.  Google Scholar

[14]

S. Iyengar, Hitting lines with two-dimensional Brownian motion, SIAM Journal of Applied Mathematics, 45 (1985), 983-989.  doi: 10.1137/0145060.  Google Scholar

[15]

R. Jarrow and S. Turnbull, Credit Risk: Drawing the Analogy, Risk Magazine, 5, 1992. Google Scholar

[16]

R. Jarrow and S. Turnbull, Pricing options of financial securities subject to default risk, Journal of Finance, 50 (1995), 53-86.   Google Scholar

[17] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, Third edition, Imperial College Press, London, 2012.  doi: 10.1142/p821.  Google Scholar
[18]

S. Kou and H. Zhong, First Passage Times of Two-dimensional Correlated Brownian Motion, presentation at "Nonlinear Expectation, Stochastic Calculus under Knightian Uncertainty, and Related Topics", Institute of Mathematical Sciences, National University of Singapore, Singapore, 3 June - 12 July, 2013. Google Scholar

[19]

R. C. Merton, On the pricing of corporate debt: The risk structure of interest rates, Journal of Finance, 29 (1974), 449-470.  doi: 10.1142/9789814759588_0003.  Google Scholar

[20]

A. Metzler, On the first passage problem for correlated Brownian motion, Statistics and Probability Letters, 80 (2010), 277-284.  doi: 10.1016/j.spl.2009.11.001.  Google Scholar

[21]

L. C. G. Rogers and L. Shepp, The correlation of the maxima of correlated Brownian motions, J. Applied Probability, 43 (2006), 880-883.  doi: 10.1239/jap/1158784954.  Google Scholar

[22]

F. Yu, Correlated defaults in intensity-based models, Mathematical Finance, 17 (2007), 155-173.   Google Scholar

[23]

H. Zheng and L. Jiang, Basket CDS pricing with interacting intensities, Finance and Stochastics, 13 (2009), 445-469.  doi: 10.1007/s00780-009-0091-2.  Google Scholar

Figure 1.  Default Intensity process $ \lambda_2 $ when $ \tau_1 = 2 $
Figure 2.  Default Intensities of firm B where $ \rho = -0.5 $
Figure 3.  Default Intensity Process $ \lambda_2 $ when $ \rho = 0 $
Figure 4.  Default Intensity Process $ \lambda_2 $ when $ \tau_1 = 2 $ and $ \rho = 0.1 $
Figure 5.  Default Intensity Process $ \lambda_2 $ when $ \tau_1 = 2 $ and $ \rho = -0.1 $
[1]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[2]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, 2021, 14 (1) : 77-88. doi: 10.3934/krm.2020049

[3]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[4]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[5]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[6]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[7]

Chuan Ding, Da-Hai Li. Angel capitalists exit decisions under information asymmetry: IPO or acquisitions. Journal of Industrial & Management Optimization, 2021, 17 (1) : 369-392. doi: 10.3934/jimo.2019116

[8]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[9]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[10]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[11]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[12]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[13]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[14]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[15]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[16]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[17]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[18]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[19]

Wenqin Zhang, Zhengchun Zhou, Udaya Parampalli, Vladimir Sidorenko. Capacity-achieving private information retrieval scheme with a smaller sub-packetization. Advances in Mathematics of Communications, 2021, 15 (2) : 347-363. doi: 10.3934/amc.2020070

[20]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (111)
  • HTML views (374)
  • Cited by (0)

Other articles
by authors

[Back to Top]