[1]
|
C. A, Y. Lai and Y. Shao, Optimal excess-of-loss reinsurance and investment problem with delay and jump-diffusion risk process under the cev model, Journal of Computational and Applied Mathematics, 342 (2018), 317-336.
doi: 10.1016/j.cam.2018.03.035.
|
[2]
|
C. A and Z. Li, Optimal investment and excess-of-loss reinsurance problem with delay for an insurer under Heston's SV model, Insurance: Mathematics and Economics, 61 (2015), 181-196.
doi: 10.1016/j.insmatheco.2015.01.005.
|
[3]
|
C. A and Y. Shao, Portfolio optimization problem with delay under Cox-Ingersoll-Ross model, Journal of Mathematical Finance, 07 (2017), 699-717.
doi: 10.4236/jmf.2017.73037.
|
[4]
|
L. Bai and J. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance: Mathematics and Economics, 42 (2008), 968-975.
doi: 10.1016/j.insmatheco.2007.11.002.
|
[5]
|
A. Bensoussan and J. Frehse, Stochastic games for n players, Journal of Optimization Theory and Applications, 105 (2000), 543-565.
doi: 10.1023/A:1004637022496.
|
[6]
|
A. Bensoussan, C. C. Siu, S. C. P. Yam and H. Yang, A class of non-zero-sum stochastic differential investment and reinsurance games, Automatica, 50 (2014), 2025-2037.
doi: 10.1016/j.automatica.2014.05.033.
|
[7]
|
T. Björk, A. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x.
|
[8]
|
S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.
doi: 10.1287/moor.20.4.937.
|
[9]
|
G. Callegaro, M. Gaïgi, S. Scotti and C. Sgarra, Optimal investment in markets with over and under-reaction to information, Mathematics and Financial Economics, 11 (2016), 299-322.
doi: 10.1007/s11579-016-0182-8.
|
[10]
|
R. Carmona, F. Delarue, G. Espinosa and N. Touzi, Singular forward-backward stochastic differential equations and emissions derivatives, The Annals of Applied Probability, 23 (2013), 1086-1128.
doi: 10.1214/12-AAP865.
|
[11]
|
L. Chen and H. Yang, Optimal reinsurance and investment strategy with two piece utility function, Journal of Industrial and Management Optimization, 13 (2017), 737-755.
doi: 10.3934/jimo.2016044.
|
[12]
|
S. Chen, Z. Li and K. Li, Optimal investment-reinsurance policy for an insurance company with VaR constraint, Insurance: Mathematics and Economics, 47 (2010), 144-153.
doi: 10.1016/j.insmatheco.2010.06.002.
|
[13]
|
S. Chen, H. Yang and Y. Zeng, Stochastic differential games between two insurers with generalized mean-variance premium principle, ASTIN Bulletin, 48 (2018), 413-434.
doi: 10.1017/asb.2017.35.
|
[14]
|
C. Deng, X. Zeng and H. Zhu, Non-zero-sum stochastic differential reinsurance and investment games with default risk, European Journal of Operational Research, 264 (2018), 1144-1158.
doi: 10.1016/j.ejor.2017.06.065.
|
[15]
|
I. Elsanosi and B. Larssen, Optimal consumption under partial observations for a stochastic system with delay, Preprint Series in Pure Mathematics.
|
[16]
|
I. Elsanosi, B. Øksendal and A. Sulem, Some solvable stochastic control problems with delay, Stochastics and Stochastic Reports, 71 (2000), 69-89.
doi: 10.1080/17442500008834259.
|
[17]
|
G. Espinosa and N. Touzi, Optimal investment under relative performance concerns, Mathematical Finance, 25 (2015), 221-257.
doi: 10.1111/mafi.12034.
|
[18]
|
J. Fouque, A. Papanicolaou and R. Sircar, Perturbation analysis for investment portfolios under partial information with expert opinions, SIAM Journal on Control and Optimization, 55 (2017), 1534-1566.
doi: 10.1137/15M1006854.
|
[19]
|
H. U. Gerber and E. S. W. Shiu, On optimal dividends: From reflection to refraction, Journal of Computational and Applied Mathematics, 186 (2006), 4-22.
doi: 10.1016/j.cam.2005.03.062.
|
[20]
|
J. Grandell, A class of approximations of ruin probabilities, Scandinavian Actuarial Journal, 1977 (1977), 37-52.
doi: 10.1080/03461238.1977.10405071.
|
[21]
|
G. Guan and Z. Liang, A stochastic Nash equilibrium portfolio game between two DC pension funds, Insurance: Mathematics and Economics, 70 (2016), 237-244.
doi: 10.1016/j.insmatheco.2016.06.015.
|
[22]
|
S. L. Hansen, Optimal consumption and investment strategies with partial and private information in a multi-asset setting, Mathematics and Financial Economics, 7 (2012), 305-340.
doi: 10.1007/s11579-012-0086-1.
|
[23]
|
D. Hu, S. Chen and H. Wang, Robust reinsurance contracts with uncertainty about jump risk, European Journal of Operational Research, 266 (2018), 1175-1188.
doi: 10.1016/j.ejor.2017.10.061.
|
[24]
|
Y. Huang, X. Yang and J. Zhou, Optimal investment and proportional reinsurance for a jump-diffusion risk model with constrained control variables, Journal of Computational and Applied Mathematics, 296 (2016), 443-461.
doi: 10.1016/j.cam.2015.09.032.
|
[25]
|
R. Korn and P. Wilmott, Optimal portfolios under the threat of a crash, International Journal of Theoretical and Applied Finance, 5 (2002), 171-187.
doi: 10.1142/S0219024902001407.
|
[26]
|
P. Lakner, Utility maximization with partial information, Stochastic Processes and Their Applications, 56 (1995), 247-273.
doi: 10.1016/0304-4149(94)00073-3.
|
[27]
|
P. Li, W. Zhao and W. Zhou, Ruin probabilities and optimal investment when the stock price follows an exponential Lévy process, Applied Mathematics and Computation, 259 (2015), 1030-1045.
doi: 10.1016/j.amc.2014.12.042.
|
[28]
|
Z. Li, Y. Zeng and Y. Lai, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model, Insurance: Mathematics and Economics, 51 (2012), 191-203.
doi: 10.1016/j.insmatheco.2011.09.002.
|
[29]
|
X. Lin and Y. Qian, Time-consistent mean-variance reinsurance-investment strategy for insurers under CEV model, Scandinavian Actuarial Journal, 2016 (2016), 646-671.
doi: 10.1080/03461238.2015.1048710.
|
[30]
|
X. Lin, C. Zhang and T. K. Siu, Stochastic differential portfolio games for an insurer in a jump-diffusion risk process, Mathematical Methods of Operations Research, 75 (2012), 83-100.
doi: 10.1007/s00186-011-0376-z.
|
[31]
|
H. Meng, S. Li and Z. Jin, A reinsurance game between two insurance companies with nonlinear risk processes, Insurance: Mathematics and Economics, 62 (2015), 91-97.
doi: 10.1016/j.insmatheco.2015.03.008.
|
[32]
|
R. Merton, On estimating the expected return on the market: An exploratory investigation, Journal of Financial Economics, 8 (1980), 323-361.
doi: 10.3386/w0444.
|
[33]
|
C. S. Pun and H. Y. Wong, Robust non-zero-sum stochastic differential reinsurance game, Insurance: Mathematics and Economics, 68 (2016), 169-177.
doi: 10.1016/j.insmatheco.2016.02.007.
|
[34]
|
W. Putschögl and J. Sass, Optimal consumption and investment under partial information, Decisions in Economics and Finance, 31 (2008), 137-170.
doi: 10.1007/s10203-008-0082-3.
|
[35]
|
Y. Shen and Y. Zeng, Optimal investment-reinsurance with delay for mean-variance insurers: A maximum principle approach, Insurance: Mathematics and Economics, 57 (2014), 1-12.
doi: 10.1016/j.insmatheco.2014.04.004.
|
[36]
|
L. Xu, R. Wang and D. Yao, On maximizing the expected terminal utility by investment and reinsurance, Journal of Industrial and Management Optimization, 4 (2008), 801-815.
doi: 10.3934/jimo.2008.4.801.
|
[37]
|
M. Yan, F. Peng and S. Zhang, A reinsurance and investment game between two insurance companies with the different opinions about some extra information, Insurance: Mathematics and Economics, 75 (2017), 58-70.
doi: 10.1016/j.insmatheco.2017.04.002.
|
[38]
|
X. Yang, Z. Liang and C. Zhang, Optimal mean-variance reinsurance with delay and multiple classes of dependent risks, Scientia Sinica Mathematica, 47 (2017), 723-756.
|
[39]
|
X. Zeng, A stochastic differential reinsurance game, Journal of Applied Probability, 47 (2010), 335-349.
doi: 10.1239/jap/1276784895.
|
[40]
|
Y. Zeng, D. Li and A. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance: Mathematics and Economics, 66 (2016), 138-152.
doi: 10.1016/j.insmatheco.2015.10.012.
|
[41]
|
H. Zhao and X. Rong, On the constant elasticity of variance model for the utility maximization problem with multiple risky assets, IMA Journal of Management Mathematics, 28 (2017), 299-320.
doi: 10.1093/imaman/dpv011.
|
[42]
|
Z. Zhou, T. Ren, H. Xiao and W. Liu, Time-consistent investment and reinsurance strategies for insurers under multi-period mean-variance formulation with generalized correlated returns, Journal of Management Science and Engineering, 4 (2019), 142-157.
doi: 10.1016/j.jmse.2019.05.003.
|