• Previous Article
    Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty
  • JIMO Home
  • This Issue
  • Next Article
    A non-zero-sum reinsurance-investment game with delay and asymmetric information
March  2021, 17(2): 937-952. doi: 10.3934/jimo.2020005

Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin

1. 

School of Finance, Nanjing University of Finance and Economics, Nanjing 210023, China

2. 

China Institute for Actuarial Science, Central University of Finance and Economics, Beijing 100081, China

* Corresponding author: Ming Zhou

Received  August 2018 Revised  June 2019 Published  March 2021 Early access  January 2020

Fund Project: This research is supported by by the National Natural Science Foundation of China (11971506, 11571388), Beijing Social Science Foundation (15JGB046), the MOE Project of Key Research Institute of Humanities and Social Science at Universities (15JJD790036), and the 111 Project (B17050)

Robust portfolio selection has become a popular problem in recent years. In this paper, we study the optimal investment problem for an individual who carries a constant consumption rate but worries about the model ambiguity of the financial market. Instead of using a conventional value function such as the utility of terminal wealth maximization, here, we focus on the purpose of risk control and seek to minimize the probability of lifetime ruin. This study is motivated by the work of [3], except that we use a standardized penalty for ambiguity aversion. The reason for taking a standardized penalty is to convert the penalty to units of the value function, which makes the difference meaningful in the definition of the value function. The advantage of taking a standardized penalty is that the closed-form solutions to both the robust investment policy and the value function can be obtained. More interestingly, we use the "Ambiguity Derived Ratio" to characterize the existence of model ambiguity which significantly affects the optimal investment policy. Finally, several numerical examples are given to illustrate our results.

Citation: Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial and Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005
References:
[1]

E. AndersonL. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123. 

[2]

E. Bayraktar and V. R. Young, Correspondence between lifetime minimum wealth and utility of consumption, Finance Stochastics, 11 (2007), 213-236.  doi: 10.1007/s00780-007-0035-7.

[3]

E. Bayraktar and Y. Zhang, Minimizing the probability of lifetime ruin under ambiguity aversion, SIAM Journal on Control and Optimization, 53 (2015), 58-90.  doi: 10.1137/140955999.

[4]

S. Browne, Risk-constrained dynamic active portfolio management, World Scientific Handbook in Financial Economics Series, 3 (2011), 373-354.  doi: 10.1142/9789814293501_0026.

[5]

W. H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edition, Springer, New York, 2006.

[6]

L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66. 

[7] L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400829385.
[8]

L. P. HansenT. J. SargentG. Turmuhambetova and N. Williams, Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.  doi: 10.1016/j.jet.2004.12.006.

[9] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2 edition, Imperial College Press, 2005.  doi: 10.1142/p386.
[10]

P. J. Maenhout, Robust portfolio rules and asset pricing, Review of Financial Studies, 17 (2004), 951-983.  doi: 10.1093/rfs/hhh003.

[11]

H. MengF. L. YuenK. T. Siu and H. L. Yang, Optimal portfolio in a continuous-time self-exciting threshold model, Journal of Industrial and Management Optimization, 9 (2013), 487-504.  doi: 10.3934/jimo.2013.9.487.

[12]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.

[13]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.

[14]

S. E. Shreve and H. M. Soner, Optimal investment and consumption with transaction costs, Annals of Applied Probability, 4 (1994), 609-692.  doi: 10.1214/aoap/1177004966.

[15]

L. Sun and L. H. Zhang, Optimal consumption and investment under irrational beliefs, Journal of Industrial and Management Optimization, 7 (2011), 139-156.  doi: 10.3934/jimo.2011.7.139.

[16]

R. Uppal and T. Wang, Model misspecification and underdiversification, The Journal of Finance, 58 (2003), 2465-2486.  doi: 10.1046/j.1540-6261.2003.00612.x.

[17]

B. YiZ. LiF. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.  doi: 10.1016/j.insmatheco.2013.08.011.

[18]

C. C. Yin and Y. Z. Wen, An extension of Paulsen-Gjessing's risk model with stochastic return on investments, Insurance: Mathematics and Economics, 52 (2013), 469-476.  doi: 10.1016/j.insmatheco.2013.02.014.

[19]

V. R. Young, Optimal investment strategy to minimize the probability of lifetime ruin, North American Actuarial Journal, 8 (2004), 105-126.  doi: 10.1080/10920277.2004.10596174.

[20]

T. Zariphopoulou, Consumption-investment models with constraints, SIAM Journal on Control and Optimization, 32 (1994), 59-85.  doi: 10.1137/S0363012991218827.

[21]

X. ZhangT. K. Siu and Q. B. Meng, Portfolio selection in the enlarged Markovian regime-switching market, SIAM Journal on Control and Optimization, 48 (2010), 3368-3388.  doi: 10.1137/080736351.

[22]

M. Zhou and K. C. Yuen, Portfolio selection by minimizing the present value of capital injection costs, Astin Bulletin, 45 (2015), 207-238.  doi: 10.1017/asb.2014.22.

[23]

M. ZhouK. C. Yuen and C. C. Yin, Optimal investment and premium control for insurers with a nonlinear diffusion model, Acta Mathematicae Applicatae Sinica (English Series), 33 (2017), 945-958.  doi: 10.1007/s10255-017-0709-7.

show all references

References:
[1]

E. AndersonL. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123. 

[2]

E. Bayraktar and V. R. Young, Correspondence between lifetime minimum wealth and utility of consumption, Finance Stochastics, 11 (2007), 213-236.  doi: 10.1007/s00780-007-0035-7.

[3]

E. Bayraktar and Y. Zhang, Minimizing the probability of lifetime ruin under ambiguity aversion, SIAM Journal on Control and Optimization, 53 (2015), 58-90.  doi: 10.1137/140955999.

[4]

S. Browne, Risk-constrained dynamic active portfolio management, World Scientific Handbook in Financial Economics Series, 3 (2011), 373-354.  doi: 10.1142/9789814293501_0026.

[5]

W. H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edition, Springer, New York, 2006.

[6]

L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66. 

[7] L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400829385.
[8]

L. P. HansenT. J. SargentG. Turmuhambetova and N. Williams, Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.  doi: 10.1016/j.jet.2004.12.006.

[9] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2 edition, Imperial College Press, 2005.  doi: 10.1142/p386.
[10]

P. J. Maenhout, Robust portfolio rules and asset pricing, Review of Financial Studies, 17 (2004), 951-983.  doi: 10.1093/rfs/hhh003.

[11]

H. MengF. L. YuenK. T. Siu and H. L. Yang, Optimal portfolio in a continuous-time self-exciting threshold model, Journal of Industrial and Management Optimization, 9 (2013), 487-504.  doi: 10.3934/jimo.2013.9.487.

[12]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.

[13]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.

[14]

S. E. Shreve and H. M. Soner, Optimal investment and consumption with transaction costs, Annals of Applied Probability, 4 (1994), 609-692.  doi: 10.1214/aoap/1177004966.

[15]

L. Sun and L. H. Zhang, Optimal consumption and investment under irrational beliefs, Journal of Industrial and Management Optimization, 7 (2011), 139-156.  doi: 10.3934/jimo.2011.7.139.

[16]

R. Uppal and T. Wang, Model misspecification and underdiversification, The Journal of Finance, 58 (2003), 2465-2486.  doi: 10.1046/j.1540-6261.2003.00612.x.

[17]

B. YiZ. LiF. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.  doi: 10.1016/j.insmatheco.2013.08.011.

[18]

C. C. Yin and Y. Z. Wen, An extension of Paulsen-Gjessing's risk model with stochastic return on investments, Insurance: Mathematics and Economics, 52 (2013), 469-476.  doi: 10.1016/j.insmatheco.2013.02.014.

[19]

V. R. Young, Optimal investment strategy to minimize the probability of lifetime ruin, North American Actuarial Journal, 8 (2004), 105-126.  doi: 10.1080/10920277.2004.10596174.

[20]

T. Zariphopoulou, Consumption-investment models with constraints, SIAM Journal on Control and Optimization, 32 (1994), 59-85.  doi: 10.1137/S0363012991218827.

[21]

X. ZhangT. K. Siu and Q. B. Meng, Portfolio selection in the enlarged Markovian regime-switching market, SIAM Journal on Control and Optimization, 48 (2010), 3368-3388.  doi: 10.1137/080736351.

[22]

M. Zhou and K. C. Yuen, Portfolio selection by minimizing the present value of capital injection costs, Astin Bulletin, 45 (2015), 207-238.  doi: 10.1017/asb.2014.22.

[23]

M. ZhouK. C. Yuen and C. C. Yin, Optimal investment and premium control for insurers with a nonlinear diffusion model, Acta Mathematicae Applicatae Sinica (English Series), 33 (2017), 945-958.  doi: 10.1007/s10255-017-0709-7.

Figure 1.  Optimal investment policies with respect to the wealth and the model ambiguity
Figure 5.  Ambiguity Derived Ratio with respect to model ambiguity
Figure 2.  Optimal investment policies with respect to the lifetime
Figure 3.  The value function with respect to model ambiguity
Figure 4.  Return rate of the risky asset under robust risk measure ($ \mu = 0.1 $)
[1]

Luyang Yu, Liyuan Lin, Guohui Guan, Jingzhen Liu. Time-consistent lifetime portfolio selection under smooth ambiguity. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022023

[2]

Yu Yuan, Hui Mi. Robust optimal asset-liability management with penalization on ambiguity. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021121

[3]

Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial and Management Optimization, 2020, 16 (6) : 3065-3081. doi: 10.3934/jimo.2019094

[4]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial and Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[5]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial and Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[6]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial and Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[7]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial and Management Optimization, 2020, 16 (1) : 261-287. doi: 10.3934/jimo.2018151

[8]

Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control and Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475

[9]

Ludovic Tangpi. Efficient hedging under ambiguity in continuous time. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 6-. doi: 10.1186/s41546-020-00048-9

[10]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control and Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[11]

Meng Wu, Jiefeng Yang. The optimal exit of staged investment when consider the posterior probability. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1105-1123. doi: 10.3934/jimo.2016064

[12]

Xia Han, Zhibin Liang, Yu Yuan, Caibin Zhang. Optimal per-loss reinsurance and investment to minimize the probability of drawdown. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021145

[13]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial and Management Optimization, 2022, 18 (2) : 933-967. doi: 10.3934/jimo.2021003

[14]

Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial and Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31

[15]

Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial and Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719

[16]

Baoyin Xun, Kam C. Yuen, Kaiyong Wang. The finite-time ruin probability of a risk model with a general counting process and stochastic return. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1541-1556. doi: 10.3934/jimo.2021032

[17]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control and Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[18]

Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control and Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014

[19]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial and Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[20]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5873-5903. doi: 10.3934/dcdsb.2021070

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (369)
  • HTML views (600)
  • Cited by (0)

Other articles
by authors

[Back to Top]