doi: 10.3934/jimo.2020005

Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin

1. 

School of Finance, Nanjing University of Finance and Economics, Nanjing 210023, China

2. 

China Institute for Actuarial Science, Central University of Finance and Economics, Beijing 100081, China

* Corresponding author: Ming Zhou

Received  August 2018 Revised  June 2019 Published  January 2020

Fund Project: This research is supported by by the National Natural Science Foundation of China (11971506, 11571388), Beijing Social Science Foundation (15JGB046), the MOE Project of Key Research Institute of Humanities and Social Science at Universities (15JJD790036), and the 111 Project (B17050)

Robust portfolio selection has become a popular problem in recent years. In this paper, we study the optimal investment problem for an individual who carries a constant consumption rate but worries about the model ambiguity of the financial market. Instead of using a conventional value function such as the utility of terminal wealth maximization, here, we focus on the purpose of risk control and seek to minimize the probability of lifetime ruin. This study is motivated by the work of [3], except that we use a standardized penalty for ambiguity aversion. The reason for taking a standardized penalty is to convert the penalty to units of the value function, which makes the difference meaningful in the definition of the value function. The advantage of taking a standardized penalty is that the closed-form solutions to both the robust investment policy and the value function can be obtained. More interestingly, we use the "Ambiguity Derived Ratio" to characterize the existence of model ambiguity which significantly affects the optimal investment policy. Finally, several numerical examples are given to illustrate our results.

Citation: Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020005
References:
[1]

E. AndersonL. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123.   Google Scholar

[2]

E. Bayraktar and V. R. Young, Correspondence between lifetime minimum wealth and utility of consumption, Finance Stochastics, 11 (2007), 213-236.  doi: 10.1007/s00780-007-0035-7.  Google Scholar

[3]

E. Bayraktar and Y. Zhang, Minimizing the probability of lifetime ruin under ambiguity aversion, SIAM Journal on Control and Optimization, 53 (2015), 58-90.  doi: 10.1137/140955999.  Google Scholar

[4]

S. Browne, Risk-constrained dynamic active portfolio management, World Scientific Handbook in Financial Economics Series, 3 (2011), 373-354.  doi: 10.1142/9789814293501_0026.  Google Scholar

[5]

W. H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edition, Springer, New York, 2006.  Google Scholar

[6]

L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66.   Google Scholar

[7] L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400829385.  Google Scholar
[8]

L. P. HansenT. J. SargentG. Turmuhambetova and N. Williams, Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.  doi: 10.1016/j.jet.2004.12.006.  Google Scholar

[9] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2 edition, Imperial College Press, 2005.  doi: 10.1142/p386.  Google Scholar
[10]

P. J. Maenhout, Robust portfolio rules and asset pricing, Review of Financial Studies, 17 (2004), 951-983.  doi: 10.1093/rfs/hhh003.  Google Scholar

[11]

H. MengF. L. YuenK. T. Siu and H. L. Yang, Optimal portfolio in a continuous-time self-exciting threshold model, Journal of Industrial and Management Optimization, 9 (2013), 487-504.  doi: 10.3934/jimo.2013.9.487.  Google Scholar

[12]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[13]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[14]

S. E. Shreve and H. M. Soner, Optimal investment and consumption with transaction costs, Annals of Applied Probability, 4 (1994), 609-692.  doi: 10.1214/aoap/1177004966.  Google Scholar

[15]

L. Sun and L. H. Zhang, Optimal consumption and investment under irrational beliefs, Journal of Industrial and Management Optimization, 7 (2011), 139-156.  doi: 10.3934/jimo.2011.7.139.  Google Scholar

[16]

R. Uppal and T. Wang, Model misspecification and underdiversification, The Journal of Finance, 58 (2003), 2465-2486.  doi: 10.1046/j.1540-6261.2003.00612.x.  Google Scholar

[17]

B. YiZ. LiF. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.  doi: 10.1016/j.insmatheco.2013.08.011.  Google Scholar

[18]

C. C. Yin and Y. Z. Wen, An extension of Paulsen-Gjessing's risk model with stochastic return on investments, Insurance: Mathematics and Economics, 52 (2013), 469-476.  doi: 10.1016/j.insmatheco.2013.02.014.  Google Scholar

[19]

V. R. Young, Optimal investment strategy to minimize the probability of lifetime ruin, North American Actuarial Journal, 8 (2004), 105-126.  doi: 10.1080/10920277.2004.10596174.  Google Scholar

[20]

T. Zariphopoulou, Consumption-investment models with constraints, SIAM Journal on Control and Optimization, 32 (1994), 59-85.  doi: 10.1137/S0363012991218827.  Google Scholar

[21]

X. ZhangT. K. Siu and Q. B. Meng, Portfolio selection in the enlarged Markovian regime-switching market, SIAM Journal on Control and Optimization, 48 (2010), 3368-3388.  doi: 10.1137/080736351.  Google Scholar

[22]

M. Zhou and K. C. Yuen, Portfolio selection by minimizing the present value of capital injection costs, Astin Bulletin, 45 (2015), 207-238.  doi: 10.1017/asb.2014.22.  Google Scholar

[23]

M. ZhouK. C. Yuen and C. C. Yin, Optimal investment and premium control for insurers with a nonlinear diffusion model, Acta Mathematicae Applicatae Sinica (English Series), 33 (2017), 945-958.  doi: 10.1007/s10255-017-0709-7.  Google Scholar

show all references

References:
[1]

E. AndersonL. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123.   Google Scholar

[2]

E. Bayraktar and V. R. Young, Correspondence between lifetime minimum wealth and utility of consumption, Finance Stochastics, 11 (2007), 213-236.  doi: 10.1007/s00780-007-0035-7.  Google Scholar

[3]

E. Bayraktar and Y. Zhang, Minimizing the probability of lifetime ruin under ambiguity aversion, SIAM Journal on Control and Optimization, 53 (2015), 58-90.  doi: 10.1137/140955999.  Google Scholar

[4]

S. Browne, Risk-constrained dynamic active portfolio management, World Scientific Handbook in Financial Economics Series, 3 (2011), 373-354.  doi: 10.1142/9789814293501_0026.  Google Scholar

[5]

W. H. Fleming and M. Soner, Controlled Markov Processes and Viscosity Solutions, 2nd edition, Springer, New York, 2006.  Google Scholar

[6]

L. P. Hansen and T. J. Sargent, Robust control and model uncertainty, American Economic Review, 91 (2001), 60-66.   Google Scholar

[7] L. P. Hansen and T. J. Sargent, Robustness, Princeton University Press, Princeton, NJ, 2008.  doi: 10.1515/9781400829385.  Google Scholar
[8]

L. P. HansenT. J. SargentG. Turmuhambetova and N. Williams, Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.  doi: 10.1016/j.jet.2004.12.006.  Google Scholar

[9] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2 edition, Imperial College Press, 2005.  doi: 10.1142/p386.  Google Scholar
[10]

P. J. Maenhout, Robust portfolio rules and asset pricing, Review of Financial Studies, 17 (2004), 951-983.  doi: 10.1093/rfs/hhh003.  Google Scholar

[11]

H. MengF. L. YuenK. T. Siu and H. L. Yang, Optimal portfolio in a continuous-time self-exciting threshold model, Journal of Industrial and Management Optimization, 9 (2013), 487-504.  doi: 10.3934/jimo.2013.9.487.  Google Scholar

[12]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, The Review of Economics and Statistics, 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[13]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[14]

S. E. Shreve and H. M. Soner, Optimal investment and consumption with transaction costs, Annals of Applied Probability, 4 (1994), 609-692.  doi: 10.1214/aoap/1177004966.  Google Scholar

[15]

L. Sun and L. H. Zhang, Optimal consumption and investment under irrational beliefs, Journal of Industrial and Management Optimization, 7 (2011), 139-156.  doi: 10.3934/jimo.2011.7.139.  Google Scholar

[16]

R. Uppal and T. Wang, Model misspecification and underdiversification, The Journal of Finance, 58 (2003), 2465-2486.  doi: 10.1046/j.1540-6261.2003.00612.x.  Google Scholar

[17]

B. YiZ. LiF. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.  doi: 10.1016/j.insmatheco.2013.08.011.  Google Scholar

[18]

C. C. Yin and Y. Z. Wen, An extension of Paulsen-Gjessing's risk model with stochastic return on investments, Insurance: Mathematics and Economics, 52 (2013), 469-476.  doi: 10.1016/j.insmatheco.2013.02.014.  Google Scholar

[19]

V. R. Young, Optimal investment strategy to minimize the probability of lifetime ruin, North American Actuarial Journal, 8 (2004), 105-126.  doi: 10.1080/10920277.2004.10596174.  Google Scholar

[20]

T. Zariphopoulou, Consumption-investment models with constraints, SIAM Journal on Control and Optimization, 32 (1994), 59-85.  doi: 10.1137/S0363012991218827.  Google Scholar

[21]

X. ZhangT. K. Siu and Q. B. Meng, Portfolio selection in the enlarged Markovian regime-switching market, SIAM Journal on Control and Optimization, 48 (2010), 3368-3388.  doi: 10.1137/080736351.  Google Scholar

[22]

M. Zhou and K. C. Yuen, Portfolio selection by minimizing the present value of capital injection costs, Astin Bulletin, 45 (2015), 207-238.  doi: 10.1017/asb.2014.22.  Google Scholar

[23]

M. ZhouK. C. Yuen and C. C. Yin, Optimal investment and premium control for insurers with a nonlinear diffusion model, Acta Mathematicae Applicatae Sinica (English Series), 33 (2017), 945-958.  doi: 10.1007/s10255-017-0709-7.  Google Scholar

Figure 1.  Optimal investment policies with respect to the wealth and the model ambiguity
Figure 5.  Ambiguity Derived Ratio with respect to model ambiguity
Figure 2.  Optimal investment policies with respect to the lifetime
Figure 3.  The value function with respect to model ambiguity
Figure 4.  Return rate of the risky asset under robust risk measure ($ \mu = 0.1 $)
[1]

Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019094

[2]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[3]

Hanqing Jin, Xun Yu Zhou. Continuous-time portfolio selection under ambiguity. Mathematical Control & Related Fields, 2015, 5 (3) : 475-488. doi: 10.3934/mcrf.2015.5.475

[4]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial & Management Optimization, 2020, 16 (1) : 261-287. doi: 10.3934/jimo.2018151

[5]

Yinghui Dong, Guojing Wang. Ruin probability for renewal risk model with negative risk sums. Journal of Industrial & Management Optimization, 2006, 2 (2) : 229-236. doi: 10.3934/jimo.2006.2.229

[6]

Emilija Bernackaitė, Jonas Šiaulys. The finite-time ruin probability for an inhomogeneous renewal risk model. Journal of Industrial & Management Optimization, 2017, 13 (1) : 207-222. doi: 10.3934/jimo.2016012

[7]

Meng Wu, Jiefeng Yang. The optimal exit of staged investment when consider the posterior probability. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1105-1123. doi: 10.3934/jimo.2016064

[8]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[9]

Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial & Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31

[10]

Yuebao Wang, Qingwu Gao, Kaiyong Wang, Xijun Liu. Random time ruin probability for the renewal risk model with heavy-tailed claims. Journal of Industrial & Management Optimization, 2009, 5 (4) : 719-736. doi: 10.3934/jimo.2009.5.719

[11]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[12]

Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control & Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014

[13]

Jiangyan Peng, Dingcheng Wang. Asymptotics for ruin probabilities of a non-standard renewal risk model with dependence structures and exponential Lévy process investment returns. Journal of Industrial & Management Optimization, 2017, 13 (1) : 155-185. doi: 10.3934/jimo.2016010

[14]

Xue Dong He, Roy Kouwenberg, Xun Yu Zhou. Inverse S-shaped probability weighting and its impact on investment. Mathematical Control & Related Fields, 2018, 8 (3&4) : 679-706. doi: 10.3934/mcrf.2018029

[15]

Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625

[16]

Xin Jiang, Kam Chuen Yuen, Mi Chen. Optimal investment and reinsurance with premium control. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019080

[17]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

[18]

Nan Li, Song Wang, Shuhua Zhang. Pricing options on investment project contraction and ownership transfer using a finite volume scheme and an interior penalty method. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019006

[19]

Baojun Bian, Shuntai Hu, Quan Yuan, Harry Zheng. Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5413-5433. doi: 10.3934/dcds.2015.35.5413

[20]

Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial & Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531

2018 Impact Factor: 1.025

Article outline

Figures and Tables

[Back to Top]