• Previous Article
    Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison
  • JIMO Home
  • This Issue
  • Next Article
    An efficient low complexity algorithm for box-constrained weighted maximin dispersion problem
March  2021, 17(2): 981-999. doi: 10.3934/jimo.2020008

Optimal reinsurance-investment and dividends problem with fixed transaction costs

1. 

School of Mathematics, Southeast University, Nanjing, Jiangsu Province, 211189, China

2. 

Department of Mathematics, SUSTech International Center for Mathematics, Southern University of Science and Technology, Shenzhen 518055, China

3. 

School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

* Corresponding author: Shuaiqi Zhang

* Corresponding author: Xin Zhang

Received  October 2018 Revised  August 2019 Published  December 2019

Fund Project: The first author is supported by the National Natural Science Foundation of China (grants 11771079, 11371020), the second author is supported by Southern University of Science and Technology Start up fund Y01286120 and National Natural Science Foundation of China (grants 61873325, 11831010), and the third author is supported by the National Natural Science Foundation of China (grant 11501129)

In this paper, we consider the dividend optimization problem for a financial corporation with fixed transaction costs. Besides the dividend control, the financial corporation takes proportional reinsurance to reduce risk and invests its reserve in a financial market consisting of a risk-free asset (bond) and a risky asset (stock). Because of the presence of the fixed transaction costs, the problem becomes a mixed classical-impulse stochastic control problem. We solve this problem explicitly and construct the value function together with the optimal policy.

Citation: Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008
References:
[1]

S. AsmussenB. Højgaard and M. Taksar, Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation, Finance and Stochastics, 4 (2000), 299-324.  doi: 10.1007/s007800050075.  Google Scholar

[2]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[3]

S. Asmussen and H. Albrecher, Ruin Probabilities, 2nd edition, Singapore: World Scientific, 2010. doi: 10.1142/9789814282536.  Google Scholar

[4]

A. Bensoussan and J. Lions, Nouvelle formulation de problèmes de contrôle impulsionnel et applications, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973), A1189–A1192.  Google Scholar

[5]

A. Bensoussan and J. Lions, Impulse Control and Quasivariational Inequalities, $\mu $, Gauthier-Villars, Montrouge, 1984, Translated from the French by J. M. Cole.  Google Scholar

[6]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.  Google Scholar

[7]

A. Cadenillas, Consumption-investment problems with transaction costs: Survey and open problems, Mathematical Methods of Operations Research, 51 (2000), 43-68.  doi: 10.1007/s001860050002.  Google Scholar

[8]

A. CadenillasT. ChoulliM. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm, Mathematical Finance, 16 (2006), 181-202.  doi: 10.1111/j.1467-9965.2006.00267.x.  Google Scholar

[9]

A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves, Mathematical Finance, 10 (2000), 141-156.  doi: 10.1111/1467-9965.00086.  Google Scholar

[10]

T. ChoulliM. Taksar and X. Y. Zhou, Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction, Quantitative Finance, 1 (2001), 573-596.  doi: 10.1088/1469-7688/1/6/301.  Google Scholar

[11]

T. ChoulliM. Taksar and X. Zhou, A diffusion model for optimal dividend distribution for a company with constraints on risk control, SIAM Journal on Control and Optimization, 41 (2003), 1946-1979.  doi: 10.1137/S0363012900382667.  Google Scholar

[12]

A. Dixit, A simplified treatment of the theory of optimal regulation of Brownian motion, Journal of Economic Dynamics and Control, 15 (1991), 657-673.  doi: 10.1016/0165-1889(91)90037-2.  Google Scholar

[13]

B. Dumas, Super contact and related optimality conditions, Journal of Economic Dynamics and Control, 15 (1991), 675-685.  doi: 10.1016/0165-1889(91)90038-3.  Google Scholar

[14]

J. HarrisonT. Sellke and A. Taylor, Impulse control of Brownian motion, Mathematics of Operations Research, 8 (1983), 454-466.  doi: 10.1287/moor.8.3.454.  Google Scholar

[15]

B. Højgaard and M. Taksar, Controlling risk exposure and dividends payout schemes: Insurance company example, Mathematical Finance, 9 (1999), 153-182.  doi: 10.1111/1467-9965.00066.  Google Scholar

[16]

B. Højgaard and M. Taksar, Optimal risk control for a large corporation in the presence of returns on investments, Finance and Stochastics, 5 (2001), 527-547.  doi: 10.1007/PL00000042.  Google Scholar

[17]

B. Højgaard and M. Taksar, Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy, Quantitative Finance, 4 (2004), 315-327.  doi: 10.1088/1469-7688/4/3/007.  Google Scholar

[18]

B. Højgaard and M. Taksar, Optimal proportional reinsurance policies for diffusion models, Scandinavian Actuarial Journal, 1998 (1998), 166-180.   Google Scholar

[19]

M. Jeanblanc-Picque and A. Shiryaev, Optimization of the flow of dividends, Russian Mathematical Surveys, 50 (1995), 257-277.  doi: 10.1070/RM1995v050n02ABEH002054.  Google Scholar

[20]

R. Korn, Optimal inpulse control when control actions have random consequences, Mathematics of Operations Research, 22 (1997), 639-667.  doi: 10.1287/moor.22.3.639.  Google Scholar

[21]

R. Korn, Portfolio optimisation with strictly positive transaction costs and impulse control, Finance and Stochastics, 2 (1998), 85-114.  doi: 10.1007/s007800050034.  Google Scholar

[22]

P. LiM. Zhou and C. Yin, Optimal reinsurance with both proportional and fixed costs, Statistics & Probability Letters, 106 (2015), 134-141.  doi: 10.1016/j.spl.2015.06.024.  Google Scholar

[23]

J. Paulsen and H. Gjessing, Ruin theory with stochastic return on investments, Advances in Applied Probability, 29 (1997), 965-985.  doi: 10.2307/1427849.  Google Scholar

[24]

S. Peng, Backward stochastic differential equations-stochastic optimization theory and viscosity solutions of hjb equations, Topics on Stochastic Analysis, 85–138. Google Scholar

[25]

S. Richard, Optimal impulse control of a diffusion process with both fixed and proportional costs of control, SIAM J. Control Optim., 15 (1977), 79-91.  doi: 10.1137/0315007.  Google Scholar

[26]

M. Taksar, Optimal risk and dividend distribution control models for an insurance company, Mathematical Methods of Operations Research, 51 (2000), 1-42.  doi: 10.1007/s001860050001.  Google Scholar

[27]

Z. Wu and Z. Yu, Dynamic programming principle for one kind of stochastic recursive optimal control problem and hamilton–jacobi–bellman equation, SIAM Journal on Control and Optimization, 47 (2008), 2616-2641.  doi: 10.1137/060671917.  Google Scholar

[28]

Z. Wu and L. Zhang, The corporate optimal portfolio and consumption choice problem in the real project with borrowing rate higher than deposit rate, Applied mathematics and computation, 175 (2006), 1596-1608.  doi: 10.1016/j.amc.2005.09.007.  Google Scholar

[29]

J. XiongS. ZhangH Zhao and X. Zeng, Optimal proportional reinsurance and investment problem with jump-diffusion risk process under effect of inside information, Frontiers of Mathematics in China, 9 (2014), 965-982.  doi: 10.1007/s11464-014-0403-5.  Google Scholar

[30]

H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Mathematics and Economics, 37 (2005), 615-634.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[31]

C. Yin and K. C. Yuen, Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs, Journal of Industrial and Management Optimization, 11 (2015), 1247-1262.  doi: 10.3934/jimo.2015.11.1247.  Google Scholar

[32]

S. Zhang, Impulse stochastic control for the optimization of the dividend payments of the compound Poisson risk model perturbed by diffusion, Stochastic Analysis and Applications, 30 (2012), 642-661.  doi: 10.1080/07362994.2012.684324.  Google Scholar

[33]

X. ZhangM. Zhou and J. Y. Guo, Optimal combinational quota-share and excess-of-loss reinsurance policies in a dynamic setting, Applied Stochastic Models in Business and Industry, 23 (2007), 63-71.  doi: 10.1002/asmb.637.  Google Scholar

show all references

References:
[1]

S. AsmussenB. Højgaard and M. Taksar, Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation, Finance and Stochastics, 4 (2000), 299-324.  doi: 10.1007/s007800050075.  Google Scholar

[2]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[3]

S. Asmussen and H. Albrecher, Ruin Probabilities, 2nd edition, Singapore: World Scientific, 2010. doi: 10.1142/9789814282536.  Google Scholar

[4]

A. Bensoussan and J. Lions, Nouvelle formulation de problèmes de contrôle impulsionnel et applications, C. R. Acad. Sci. Paris Sér. A-B, 276 (1973), A1189–A1192.  Google Scholar

[5]

A. Bensoussan and J. Lions, Impulse Control and Quasivariational Inequalities, $\mu $, Gauthier-Villars, Montrouge, 1984, Translated from the French by J. M. Cole.  Google Scholar

[6]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.  Google Scholar

[7]

A. Cadenillas, Consumption-investment problems with transaction costs: Survey and open problems, Mathematical Methods of Operations Research, 51 (2000), 43-68.  doi: 10.1007/s001860050002.  Google Scholar

[8]

A. CadenillasT. ChoulliM. Taksar and L. Zhang, Classical and impulse stochastic control for the optimization of the dividend and risk policies of an insurance firm, Mathematical Finance, 16 (2006), 181-202.  doi: 10.1111/j.1467-9965.2006.00267.x.  Google Scholar

[9]

A. Cadenillas and F. Zapatero, Classical and impulse stochastic control of the exchange rate using interest rates and reserves, Mathematical Finance, 10 (2000), 141-156.  doi: 10.1111/1467-9965.00086.  Google Scholar

[10]

T. ChoulliM. Taksar and X. Y. Zhou, Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction, Quantitative Finance, 1 (2001), 573-596.  doi: 10.1088/1469-7688/1/6/301.  Google Scholar

[11]

T. ChoulliM. Taksar and X. Zhou, A diffusion model for optimal dividend distribution for a company with constraints on risk control, SIAM Journal on Control and Optimization, 41 (2003), 1946-1979.  doi: 10.1137/S0363012900382667.  Google Scholar

[12]

A. Dixit, A simplified treatment of the theory of optimal regulation of Brownian motion, Journal of Economic Dynamics and Control, 15 (1991), 657-673.  doi: 10.1016/0165-1889(91)90037-2.  Google Scholar

[13]

B. Dumas, Super contact and related optimality conditions, Journal of Economic Dynamics and Control, 15 (1991), 675-685.  doi: 10.1016/0165-1889(91)90038-3.  Google Scholar

[14]

J. HarrisonT. Sellke and A. Taylor, Impulse control of Brownian motion, Mathematics of Operations Research, 8 (1983), 454-466.  doi: 10.1287/moor.8.3.454.  Google Scholar

[15]

B. Højgaard and M. Taksar, Controlling risk exposure and dividends payout schemes: Insurance company example, Mathematical Finance, 9 (1999), 153-182.  doi: 10.1111/1467-9965.00066.  Google Scholar

[16]

B. Højgaard and M. Taksar, Optimal risk control for a large corporation in the presence of returns on investments, Finance and Stochastics, 5 (2001), 527-547.  doi: 10.1007/PL00000042.  Google Scholar

[17]

B. Højgaard and M. Taksar, Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy, Quantitative Finance, 4 (2004), 315-327.  doi: 10.1088/1469-7688/4/3/007.  Google Scholar

[18]

B. Højgaard and M. Taksar, Optimal proportional reinsurance policies for diffusion models, Scandinavian Actuarial Journal, 1998 (1998), 166-180.   Google Scholar

[19]

M. Jeanblanc-Picque and A. Shiryaev, Optimization of the flow of dividends, Russian Mathematical Surveys, 50 (1995), 257-277.  doi: 10.1070/RM1995v050n02ABEH002054.  Google Scholar

[20]

R. Korn, Optimal inpulse control when control actions have random consequences, Mathematics of Operations Research, 22 (1997), 639-667.  doi: 10.1287/moor.22.3.639.  Google Scholar

[21]

R. Korn, Portfolio optimisation with strictly positive transaction costs and impulse control, Finance and Stochastics, 2 (1998), 85-114.  doi: 10.1007/s007800050034.  Google Scholar

[22]

P. LiM. Zhou and C. Yin, Optimal reinsurance with both proportional and fixed costs, Statistics & Probability Letters, 106 (2015), 134-141.  doi: 10.1016/j.spl.2015.06.024.  Google Scholar

[23]

J. Paulsen and H. Gjessing, Ruin theory with stochastic return on investments, Advances in Applied Probability, 29 (1997), 965-985.  doi: 10.2307/1427849.  Google Scholar

[24]

S. Peng, Backward stochastic differential equations-stochastic optimization theory and viscosity solutions of hjb equations, Topics on Stochastic Analysis, 85–138. Google Scholar

[25]

S. Richard, Optimal impulse control of a diffusion process with both fixed and proportional costs of control, SIAM J. Control Optim., 15 (1977), 79-91.  doi: 10.1137/0315007.  Google Scholar

[26]

M. Taksar, Optimal risk and dividend distribution control models for an insurance company, Mathematical Methods of Operations Research, 51 (2000), 1-42.  doi: 10.1007/s001860050001.  Google Scholar

[27]

Z. Wu and Z. Yu, Dynamic programming principle for one kind of stochastic recursive optimal control problem and hamilton–jacobi–bellman equation, SIAM Journal on Control and Optimization, 47 (2008), 2616-2641.  doi: 10.1137/060671917.  Google Scholar

[28]

Z. Wu and L. Zhang, The corporate optimal portfolio and consumption choice problem in the real project with borrowing rate higher than deposit rate, Applied mathematics and computation, 175 (2006), 1596-1608.  doi: 10.1016/j.amc.2005.09.007.  Google Scholar

[29]

J. XiongS. ZhangH Zhao and X. Zeng, Optimal proportional reinsurance and investment problem with jump-diffusion risk process under effect of inside information, Frontiers of Mathematics in China, 9 (2014), 965-982.  doi: 10.1007/s11464-014-0403-5.  Google Scholar

[30]

H. Yang and L. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insurance: Mathematics and Economics, 37 (2005), 615-634.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[31]

C. Yin and K. C. Yuen, Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs, Journal of Industrial and Management Optimization, 11 (2015), 1247-1262.  doi: 10.3934/jimo.2015.11.1247.  Google Scholar

[32]

S. Zhang, Impulse stochastic control for the optimization of the dividend payments of the compound Poisson risk model perturbed by diffusion, Stochastic Analysis and Applications, 30 (2012), 642-661.  doi: 10.1080/07362994.2012.684324.  Google Scholar

[33]

X. ZhangM. Zhou and J. Y. Guo, Optimal combinational quota-share and excess-of-loss reinsurance policies in a dynamic setting, Applied Stochastic Models in Business and Industry, 23 (2007), 63-71.  doi: 10.1002/asmb.637.  Google Scholar

Figure 1.  The figure of $ V'(x) $
Figure 2.  The figure of the value function $ V(x) $
[1]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[2]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[3]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[4]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[5]

Hsin-Lun Li. Mixed Hegselmann-Krause dynamics. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021084

[6]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[7]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[8]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[9]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[10]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[11]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[12]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[13]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[14]

Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216

[15]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[16]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[17]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[18]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[19]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[20]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (119)
  • HTML views (437)
  • Cited by (0)

Other articles
by authors

[Back to Top]