
-
Previous Article
The skewness for uncertain random variable and application to portfolio selection problem
- JIMO Home
- This Issue
-
Next Article
A mathematical formulation and heuristic approach for the heterogeneous fixed fleet vehicle routing problem with simultaneous pickup and delivery
On limiting characteristics for a non-stationary two-processor heterogeneous system with catastrophes, server failures and repairs
1. | Department of Mathematics, Faculty of Science, Menofia University, Shebin El Kom, Egypt |
2. | Department of Mathematics, College of Science, Taibah University, Medinah, Saudi Arabia |
3. | Vologda State University, Institute of Informatics Problems of the FRC CSC RAS, Vologda Research Center RAS, Russia |
4. | Vologda State University, Russia |
5. | Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Russia |
6. | Institute of Informatics Problems of FRC CSC RAS, Hangzhou Dianzi University, China |
In this paper, we display a method for the computation of convergence bounds for a non-stationary two-processor heterogeneous system with catastrophes, server failures and repairs when all parameters varying with time. Based on the logarithmic norm of linear operators, the bounds on the rate of convergence and the main limiting characteristics of the queue-length process are obtained. Finally a numerical example is presented to show the effect of parameters.
References:
[1] |
S. I. Ammar,
Transient behavior of a two-processor heterogeneous system with catastrophes, server failures and repairs, Applied Mathematical Modelling, 38 (2014), 2224-2234.
doi: 10.1016/j.apm.2013.10.033. |
[2] |
S. I. Ammar and Y. F. Alharbi,
Time-dependent analysis for a two-processor heterogeneous system with time-varying arrival and service rates, Applied Mathematical Modelling, 54 (2018), 743-751.
doi: 10.1016/j.apm.2017.10.021. |
[3] |
M. Armony and A. R. Ward,
Fair dynamic routing in large-scale heterogeneous-server systems, Oper. Res., 58 (2010), 624-637.
doi: 10.1287/opre.1090.0777. |
[4] |
S. R. Chakravarthy,
A catastrophic queueing model with delayed action, Applied Mathematical Modelling, 46 (2017), 631-649.
doi: 10.1016/j.apm.2017.01.089. |
[5] |
A. Y. Chen and E. Renshaw,
The $M|M|1$ queue with mass exodus and mass arrives when empty, J. Appl. Prob., 34 (1997), 192-207.
doi: 10.2307/3215186. |
[6] |
A. Chen and E. Renshaw,
Markov bulk-arriving queues with state-dependent control at idle time, Adv. Appl. Prob., 36 (2004), 499-524.
doi: 10.1017/S0001867800013586. |
[7] |
A. Chen, P. Pollett, J. P. Li and H. J. Zhang,
Markovian bulk-arrival and bulk-service queues with state-dependent control, Queueing Syst., 64 (2010), 267-304.
doi: 10.1007/s11134-009-9162-5. |
[8] |
Ju. L. Daleckij and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, Vol. 43. American Mathematical Society, Providence, R.I., 1974. |
[9] |
P. Diaconis and L. Saloff-Coste,
Logarithmic Sobolev inequalities for finite Markov chains, The Annals of Applied Probability, 6 (1996), 695-750.
doi: 10.1214/aoap/1034968224. |
[10] |
P. Diaconis and L. Saloff-Coste,
Separation cut-offs for birth and death chains, The Annals of Applied Probability, 16 (2006), 2098-2122.
doi: 10.1214/105051606000000501. |
[11] |
A. Di Crescenzo, V. Giorno and A. G. Nobile,
Constructing transient birth-death processes by means of suitable transformations, Applied Mathematics and Computation, 281 (2016), 152-171.
doi: 10.1016/j.amc.2016.01.058. |
[12] |
A. Di Crescenzo, V. Giorno, B. K. Kumar and A. G. Nobile,
A time-non-homogeneous double-ended queue with failures and repairs and its continuous approximation, Mathematics, 6 (2018), 1-23.
doi: 10.3390/math6050081. |
[13] |
V. Giorno, A. G. Nobile and S. Spina,
On some time non-homogeneous queueing systems with catastrophes, Applied Mathematics and Computation, 245 (2014), 220-234.
doi: 10.1016/j.amc.2014.07.076. |
[14] |
B. L. Granovsky and A. I. Zeifman,
The $N$-limit of spectral gap of a class of birth-death Markov chains, Appl. Stoch. Models in Business and Industry, 16 (2000), 235-248.
doi: 10.1002/1526-4025(200010/12)16:4<235::AID-ASMB415>3.0.CO;2-S. |
[15] |
B. L. Granovsky and A. Zeifman,
Nonstationary queues: Estimation of the rate of convergence, Queueing Systems, 46 (2004), 363-388.
doi: 10.1023/B:QUES.0000027991.19758.b4. |
[16] |
L. Green and P. Kolesar,
The pointwise stationary approximation for queues with nonstationary arrivals, Manag. Sci., 37 (1991), 84-97.
doi: 10.1287/mnsc.37.1.84. |
[17] |
N. V. Kartashov, Criteria for uniform ergodicity and strong stability of Markov chains with a common phase space, Teor. Veroyatnost. i Mat. Statist., (1984), 65–81,151. |
[18] |
J. B. Keller,
Time-dependent queues, SIAM Review, 24 (1982), 410-412.
doi: 10.1137/1024098. |
[19] |
D. A. Levin and Y. Peres, Markov Chains and Mixing Times, Second edition, American Mathematical Society, Providence, RI, 2017. |
[20] |
J. P. Li and A. Y. Chen,
The decay parameter and invariant measures for Markovian bulk-arrival queues with control at idle time, Methodology and Computing in Applied Probability, 15 (2013), 467-484.
doi: 10.1007/s11009-011-9252-9. |
[21] |
A. Mandelbaum and W. A. Massey,
Strong approximations for time-dependent queues, Math. Oper. Res., 20 (1995), 33-64.
doi: 10.1287/moor.20.1.33. |
[22] |
W. A. Massey and W. Whitt,
Uniform acceleration expansions for Markov chains with time-varying rates, Ann. Appl. Probab., 8 (1998), 1130-1155.
doi: 10.1214/aoap/1028903375. |
[23] |
S. P. Meyn and R. L. Tweedie,
Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes, Ann. Appl. Probab., 25 (1993), 518-548.
doi: 10.2307/1427522. |
[24] |
S. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Second edition. Cambridge University Press, Cambridge, 2009.
![]() |
[25] |
A. Yu. Mitrophanov,
Stability and exponential convergence of continuous-time Markov chains, J. Appl. Probab., 40 (2003), 970-979.
doi: 10.1239/jap/1067436094. |
[26] |
A. Yu. Mitrophanov,
The spectral gap and perturbation bounds for reversible continuous-time Markov chains, J. Appl. Probab., 41 (2004), 1219-1222.
doi: 10.1239/jap/1101840568. |
[27] |
J. A. Schwarz, G. Selinka and R. Stolletz, Performance analysis of time-dependent queueing systems: Survey and classification, Omega, 63 (2016), 170-189. Google Scholar |
[28] |
È. A. van Doorn, A. I. Zeǐfman and T. L. Panfilova,
Estimates and asymptotics for the rate of convergence of birth-death processes, Th. Prob. Appl., 54 (2010), 97-113.
|
[29] |
È. A. van Doorn,
Representations for the decay parameter of a birth-death process based on the Courant-Fischer Theorem, Journal of applied probability, 52 (2015), 278-289.
doi: 10.1239/jap/1429282622. |
[30] |
W. Whitt,
The pointwise stationary approximation for $Mt/Mt/s$ queues is asymptotically correct as the rates increase, Manag. Sci., 37 (1991), 251-376.
doi: 10.1287/mnsc.37.3.307. |
[31] |
A. I. Zeǐfman,
Quasi-ergodicity for non-homogeneous continuous-time Markov chains, J. Appl. Probab., 26 (1989), 643-648.
doi: 10.2307/3214422. |
[32] |
A. I. Zeǐfman,
On the estimation of probabilities for birth and death processes, J. Appl. Probab., 32 (1995), 623-634.
doi: 10.2307/3215117. |
[33] |
A. I. Zeǐfman, A. V. Korotysheva, Y. A. Satin and S. Y. Shorgin, On stability for nonstationary queueing systemswith catastrophes, Informatika i Ee Primeneniya [Informatics and its Applications], 4 (2010), 9-15. Google Scholar |
[34] |
A. I. Zeǐfman, A. V. Korotysheva, T. L. Panfilova and S. Y. Shorgin, Stability bounds for some queueing systems with catastrophes, Informatika i Ee Primeneniya [Informatics and its Applications], 5 (2011), 27-33. Google Scholar |
[35] |
A. I. Zeǐfman and A. V. Korotysheva,
Perturbation bounds for $M_t|M_t|N$ queue with catastrophes, Stochastic Models, 28 (2012), 49-62.
doi: 10.1080/15326349.2011.614900. |
[36] |
A. Zeifman, Y. Satin, V. Korolev and S. Shorgin,
On truncations for weakly ergodic inhomogeneous birth and death processes, Int. J. Appl. Math. Comp. Sci., 24 (2014), 503-518.
doi: 10.2478/amcs-2014-0037. |
[37] |
A. Zeifman, Y. Satin, A. Korotysheva, V. Korolev, S. Shorgin and R. Razumchik,
Ergodicity and perturbation bounds for inhomogeneous birth and death processes with additional transitions from and to origin, Int. J. Appl. Math. Comput. Sci., 25 (2015), 787-802.
doi: 10.1515/amcs-2015-0056. |
[38] |
A. I. Zeǐfman, Ya. Satin, A. Korotysheva, V. Korolev and V. Bening,
On a class of Markovian queuing systems described by inhomogeneous birth-and-death processes with additional transitions, Doklady Mathematics, 94 (2016), 502-505.
|
[39] |
A. Zeifman, A. Korotysheva, Y. Satin, R. Razumchik, V. Korolev and S. Shorgin,
Ergodicity and uniform in time truncation bounds for inhomogeneous birth and death processes with additional transitions from and to origin, Stochastic Models, 33 (2017), 598-616.
doi: 10.1080/15326349.2017.1362654. |
[40] |
A. I. Zeǐfman, A. Korotysheva, V. Korolev and Y. Satin,
Truncation bounds for approximations of inhomogeneous continuous-time Markov chains, Theory of Probability & Its Applications, 61 (2017), 513-520.
|
[41] |
A. Zeifman, Y. Satin, K. Kiseleva, V. Korolev and T. Panfilova,
On limiting characteristics for a non-stationary two-processor heterogeneous system, Applied Mathematics and Computation, 351 (2019), 48-65.
doi: 10.1016/j.amc.2019.01.032. |
[42] |
L. N. Zhang and J. P. Li,
The M/M/c queue with mass exodus and mass arrivals when empty, Journal of Applied Probability, 52 (2015), 990-1002.
doi: 10.1239/jap/1450802748. |
show all references
References:
[1] |
S. I. Ammar,
Transient behavior of a two-processor heterogeneous system with catastrophes, server failures and repairs, Applied Mathematical Modelling, 38 (2014), 2224-2234.
doi: 10.1016/j.apm.2013.10.033. |
[2] |
S. I. Ammar and Y. F. Alharbi,
Time-dependent analysis for a two-processor heterogeneous system with time-varying arrival and service rates, Applied Mathematical Modelling, 54 (2018), 743-751.
doi: 10.1016/j.apm.2017.10.021. |
[3] |
M. Armony and A. R. Ward,
Fair dynamic routing in large-scale heterogeneous-server systems, Oper. Res., 58 (2010), 624-637.
doi: 10.1287/opre.1090.0777. |
[4] |
S. R. Chakravarthy,
A catastrophic queueing model with delayed action, Applied Mathematical Modelling, 46 (2017), 631-649.
doi: 10.1016/j.apm.2017.01.089. |
[5] |
A. Y. Chen and E. Renshaw,
The $M|M|1$ queue with mass exodus and mass arrives when empty, J. Appl. Prob., 34 (1997), 192-207.
doi: 10.2307/3215186. |
[6] |
A. Chen and E. Renshaw,
Markov bulk-arriving queues with state-dependent control at idle time, Adv. Appl. Prob., 36 (2004), 499-524.
doi: 10.1017/S0001867800013586. |
[7] |
A. Chen, P. Pollett, J. P. Li and H. J. Zhang,
Markovian bulk-arrival and bulk-service queues with state-dependent control, Queueing Syst., 64 (2010), 267-304.
doi: 10.1007/s11134-009-9162-5. |
[8] |
Ju. L. Daleckij and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, Vol. 43. American Mathematical Society, Providence, R.I., 1974. |
[9] |
P. Diaconis and L. Saloff-Coste,
Logarithmic Sobolev inequalities for finite Markov chains, The Annals of Applied Probability, 6 (1996), 695-750.
doi: 10.1214/aoap/1034968224. |
[10] |
P. Diaconis and L. Saloff-Coste,
Separation cut-offs for birth and death chains, The Annals of Applied Probability, 16 (2006), 2098-2122.
doi: 10.1214/105051606000000501. |
[11] |
A. Di Crescenzo, V. Giorno and A. G. Nobile,
Constructing transient birth-death processes by means of suitable transformations, Applied Mathematics and Computation, 281 (2016), 152-171.
doi: 10.1016/j.amc.2016.01.058. |
[12] |
A. Di Crescenzo, V. Giorno, B. K. Kumar and A. G. Nobile,
A time-non-homogeneous double-ended queue with failures and repairs and its continuous approximation, Mathematics, 6 (2018), 1-23.
doi: 10.3390/math6050081. |
[13] |
V. Giorno, A. G. Nobile and S. Spina,
On some time non-homogeneous queueing systems with catastrophes, Applied Mathematics and Computation, 245 (2014), 220-234.
doi: 10.1016/j.amc.2014.07.076. |
[14] |
B. L. Granovsky and A. I. Zeifman,
The $N$-limit of spectral gap of a class of birth-death Markov chains, Appl. Stoch. Models in Business and Industry, 16 (2000), 235-248.
doi: 10.1002/1526-4025(200010/12)16:4<235::AID-ASMB415>3.0.CO;2-S. |
[15] |
B. L. Granovsky and A. Zeifman,
Nonstationary queues: Estimation of the rate of convergence, Queueing Systems, 46 (2004), 363-388.
doi: 10.1023/B:QUES.0000027991.19758.b4. |
[16] |
L. Green and P. Kolesar,
The pointwise stationary approximation for queues with nonstationary arrivals, Manag. Sci., 37 (1991), 84-97.
doi: 10.1287/mnsc.37.1.84. |
[17] |
N. V. Kartashov, Criteria for uniform ergodicity and strong stability of Markov chains with a common phase space, Teor. Veroyatnost. i Mat. Statist., (1984), 65–81,151. |
[18] |
J. B. Keller,
Time-dependent queues, SIAM Review, 24 (1982), 410-412.
doi: 10.1137/1024098. |
[19] |
D. A. Levin and Y. Peres, Markov Chains and Mixing Times, Second edition, American Mathematical Society, Providence, RI, 2017. |
[20] |
J. P. Li and A. Y. Chen,
The decay parameter and invariant measures for Markovian bulk-arrival queues with control at idle time, Methodology and Computing in Applied Probability, 15 (2013), 467-484.
doi: 10.1007/s11009-011-9252-9. |
[21] |
A. Mandelbaum and W. A. Massey,
Strong approximations for time-dependent queues, Math. Oper. Res., 20 (1995), 33-64.
doi: 10.1287/moor.20.1.33. |
[22] |
W. A. Massey and W. Whitt,
Uniform acceleration expansions for Markov chains with time-varying rates, Ann. Appl. Probab., 8 (1998), 1130-1155.
doi: 10.1214/aoap/1028903375. |
[23] |
S. P. Meyn and R. L. Tweedie,
Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes, Ann. Appl. Probab., 25 (1993), 518-548.
doi: 10.2307/1427522. |
[24] |
S. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Second edition. Cambridge University Press, Cambridge, 2009.
![]() |
[25] |
A. Yu. Mitrophanov,
Stability and exponential convergence of continuous-time Markov chains, J. Appl. Probab., 40 (2003), 970-979.
doi: 10.1239/jap/1067436094. |
[26] |
A. Yu. Mitrophanov,
The spectral gap and perturbation bounds for reversible continuous-time Markov chains, J. Appl. Probab., 41 (2004), 1219-1222.
doi: 10.1239/jap/1101840568. |
[27] |
J. A. Schwarz, G. Selinka and R. Stolletz, Performance analysis of time-dependent queueing systems: Survey and classification, Omega, 63 (2016), 170-189. Google Scholar |
[28] |
È. A. van Doorn, A. I. Zeǐfman and T. L. Panfilova,
Estimates and asymptotics for the rate of convergence of birth-death processes, Th. Prob. Appl., 54 (2010), 97-113.
|
[29] |
È. A. van Doorn,
Representations for the decay parameter of a birth-death process based on the Courant-Fischer Theorem, Journal of applied probability, 52 (2015), 278-289.
doi: 10.1239/jap/1429282622. |
[30] |
W. Whitt,
The pointwise stationary approximation for $Mt/Mt/s$ queues is asymptotically correct as the rates increase, Manag. Sci., 37 (1991), 251-376.
doi: 10.1287/mnsc.37.3.307. |
[31] |
A. I. Zeǐfman,
Quasi-ergodicity for non-homogeneous continuous-time Markov chains, J. Appl. Probab., 26 (1989), 643-648.
doi: 10.2307/3214422. |
[32] |
A. I. Zeǐfman,
On the estimation of probabilities for birth and death processes, J. Appl. Probab., 32 (1995), 623-634.
doi: 10.2307/3215117. |
[33] |
A. I. Zeǐfman, A. V. Korotysheva, Y. A. Satin and S. Y. Shorgin, On stability for nonstationary queueing systemswith catastrophes, Informatika i Ee Primeneniya [Informatics and its Applications], 4 (2010), 9-15. Google Scholar |
[34] |
A. I. Zeǐfman, A. V. Korotysheva, T. L. Panfilova and S. Y. Shorgin, Stability bounds for some queueing systems with catastrophes, Informatika i Ee Primeneniya [Informatics and its Applications], 5 (2011), 27-33. Google Scholar |
[35] |
A. I. Zeǐfman and A. V. Korotysheva,
Perturbation bounds for $M_t|M_t|N$ queue with catastrophes, Stochastic Models, 28 (2012), 49-62.
doi: 10.1080/15326349.2011.614900. |
[36] |
A. Zeifman, Y. Satin, V. Korolev and S. Shorgin,
On truncations for weakly ergodic inhomogeneous birth and death processes, Int. J. Appl. Math. Comp. Sci., 24 (2014), 503-518.
doi: 10.2478/amcs-2014-0037. |
[37] |
A. Zeifman, Y. Satin, A. Korotysheva, V. Korolev, S. Shorgin and R. Razumchik,
Ergodicity and perturbation bounds for inhomogeneous birth and death processes with additional transitions from and to origin, Int. J. Appl. Math. Comput. Sci., 25 (2015), 787-802.
doi: 10.1515/amcs-2015-0056. |
[38] |
A. I. Zeǐfman, Ya. Satin, A. Korotysheva, V. Korolev and V. Bening,
On a class of Markovian queuing systems described by inhomogeneous birth-and-death processes with additional transitions, Doklady Mathematics, 94 (2016), 502-505.
|
[39] |
A. Zeifman, A. Korotysheva, Y. Satin, R. Razumchik, V. Korolev and S. Shorgin,
Ergodicity and uniform in time truncation bounds for inhomogeneous birth and death processes with additional transitions from and to origin, Stochastic Models, 33 (2017), 598-616.
doi: 10.1080/15326349.2017.1362654. |
[40] |
A. I. Zeǐfman, A. Korotysheva, V. Korolev and Y. Satin,
Truncation bounds for approximations of inhomogeneous continuous-time Markov chains, Theory of Probability & Its Applications, 61 (2017), 513-520.
|
[41] |
A. Zeifman, Y. Satin, K. Kiseleva, V. Korolev and T. Panfilova,
On limiting characteristics for a non-stationary two-processor heterogeneous system, Applied Mathematics and Computation, 351 (2019), 48-65.
doi: 10.1016/j.amc.2019.01.032. |
[42] |
L. N. Zhang and J. P. Li,
The M/M/c queue with mass exodus and mass arrivals when empty, Journal of Applied Probability, 52 (2015), 990-1002.
doi: 10.1239/jap/1450802748. |
[1] |
Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020357 |
[2] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[3] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[4] |
Sze-Bi Hsu, Yu Jin. The dynamics of a two host-two virus system in a chemostat environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 415-441. doi: 10.3934/dcdsb.2020298 |
[5] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[6] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[7] |
Yong-Jung Kim, Hyowon Seo, Changwook Yoon. Asymmetric dispersal and evolutional selection in two-patch system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3571-3593. doi: 10.3934/dcds.2020043 |
[8] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[9] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[10] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[11] |
Yuanshi Wang. Asymmetric diffusion in a two-patch mutualism system characterizing exchange of resource for resource. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 963-985. doi: 10.3934/dcdsb.2020149 |
[12] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[13] |
Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020 doi: 10.3934/fods.2020018 |
[14] |
Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360 |
[15] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[16] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[17] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[18] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[19] |
Björn Augner, Dieter Bothe. The fast-sorption and fast-surface-reaction limit of a heterogeneous catalysis model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 533-574. doi: 10.3934/dcdss.2020406 |
[20] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]