# American Institute of Mathematical Sciences

doi: 10.3934/jimo.2020013

## Effect of warranty and quantity discounts on a deteriorating production system with a Markovian production process and allowable shortages

 Economics and Management College, Zhaoqing University, Zhaoqing City 526061, Guangdong Province, China

* Corresponding author: Tien-Yu Lin

Received  December 2018 Revised  August 2019 Published  January 2020

This paper explores the retailer's optimal lot sizing and quantity backordering for a deteriorating production system with a two-state Markov production process in which quantity discounts are provided by the supplier. The products are sold with the policy of free reasonable repair warranty employing the fraction of nonconforming items in a lot size. Unlike the traditional economic production quantity (EPQ) model with warranty policy based on the elapsed time of the system in the control state follows an exponential distribution, this paper not only constructs an alternative mathematical model for EPQ model based on the fraction of nonconforming items in a lot size for an imperfect production system but also extends the topics of optimal quantity and shortage to a wider scope of academic research and further finds that some results are different from the traditional EPQ models. We seek to minimize the expected total relevant cost through optimal lot sizing and quantity backordering. We also demonstrate that the optimal lot size is bounded in a finite interval. An efficient algorithm is developed to determine the optimal solution. Moreover, a numerical example is given and sensitivity analysis is conducted to highlight management insights.

Citation: Tien-Yu Lin. Effect of warranty and quantity discounts on a deteriorating production system with a Markovian production process and allowable shortages. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020013
##### References:

show all references

##### References:
The inventory level for imperfect manufacturing system with allowable shortages
The three-dimension graph of the expected total cost
The values of the parameters for numerical example
 Description and parameters Value Unit Production rate ($M$) 10, 000 units/year Demand rate ($D$) 2, 000 units/year Setup cost ($K$) 500 ＄/cycle Holding cost rate for a unit (a fraction of dollar value) ($I$) 0.26 ＄/unit/year Backordering cost ($b$) 6 ＄/unit/year Repair cost/warranty cost ($c_w$) 5 ＄/unit Restoration cost ($R$) 100 ＄/cycle Probability that the system from controlled state shifts to uncontrolled state ($p$) 0.1 N/A Percentage of nonconforming items when the process is controlled state ($\lambda_1$) 0.1 N/A Percentage of nonconforming items when the process is in uncontrolled ($\lambda_2$) 0.75 N/A
 Description and parameters Value Unit Production rate ($M$) 10, 000 units/year Demand rate ($D$) 2, 000 units/year Setup cost ($K$) 500 ＄/cycle Holding cost rate for a unit (a fraction of dollar value) ($I$) 0.26 ＄/unit/year Backordering cost ($b$) 6 ＄/unit/year Repair cost/warranty cost ($c_w$) 5 ＄/unit Restoration cost ($R$) 100 ＄/cycle Probability that the system from controlled state shifts to uncontrolled state ($p$) 0.1 N/A Percentage of nonconforming items when the process is controlled state ($\lambda_1$) 0.1 N/A Percentage of nonconforming items when the process is in uncontrolled ($\lambda_2$) 0.75 N/A
The values of $L^{}, S^{*}$, and $ATC^{*}$ corresponding to 32 combinations of $p, K, c_w, I, R$
 $p$ $K$ $c_w$ $I$ $R$ $L^{*}$ $S^{*}$ $ATC^{*}$ 0.1 500 6 0.2 100 1050 480 84514.92 130 1050 480 84572.06 0.26 100 883.1 448 84652.73 130 905.1 459.2 84719.84 7.8 0.2 100 1050 480 85848.04 130 1050 480 85905.19 0.26 100 879.8 446.4 85984.22 130 901.9 457.6 86051.58 650 6 0.2 100 1050 480 84800.63 130 1062.1 485.5 84857.59 0.26 100 1050 532.7 84958.68 130 1050 532.7 85015.83 7.8 0.2 100 1050 480 86133.76 130 1059 484.1 86190.8 0.26 100 1050 532.7 86291.81 130 1050 532.7 86348.95 0.13 500 6 0.2 100 1050 480 84518.1 130 1050 480 84575.24 0.26 100 884.3 448.7 84656.5 130 906.3 459.8 84723.52 7.8 0.2 100 1050 480 85853.41 130 1050 480 85910.55 0.26 100 881.9 447.4 85990.62 130 903.9 458.6 86057.8 650 6 0.2 100 1050 480 84803.81 130 1050 480 84860.95 0.26 100 1050 532.7 84961.86 130 1050 532.7 85019 7.8 0.2 100 1050 480 86139.12 130 1060.9 485 86196.11 0.26 100 1050 532.7 86297.17 130 1050 532.7 86354.32
 $p$ $K$ $c_w$ $I$ $R$ $L^{*}$ $S^{*}$ $ATC^{*}$ 0.1 500 6 0.2 100 1050 480 84514.92 130 1050 480 84572.06 0.26 100 883.1 448 84652.73 130 905.1 459.2 84719.84 7.8 0.2 100 1050 480 85848.04 130 1050 480 85905.19 0.26 100 879.8 446.4 85984.22 130 901.9 457.6 86051.58 650 6 0.2 100 1050 480 84800.63 130 1062.1 485.5 84857.59 0.26 100 1050 532.7 84958.68 130 1050 532.7 85015.83 7.8 0.2 100 1050 480 86133.76 130 1059 484.1 86190.8 0.26 100 1050 532.7 86291.81 130 1050 532.7 86348.95 0.13 500 6 0.2 100 1050 480 84518.1 130 1050 480 84575.24 0.26 100 884.3 448.7 84656.5 130 906.3 459.8 84723.52 7.8 0.2 100 1050 480 85853.41 130 1050 480 85910.55 0.26 100 881.9 447.4 85990.62 130 903.9 458.6 86057.8 650 6 0.2 100 1050 480 84803.81 130 1050 480 84860.95 0.26 100 1050 532.7 84961.86 130 1050 532.7 85019 7.8 0.2 100 1050 480 86139.12 130 1060.9 485 86196.11 0.26 100 1050 532.7 86297.17 130 1050 532.7 86354.32
 [1] Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 [2] Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 [3] Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 [4] Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002 [5] Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011 [6] Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124 [7] Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118 [8] Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181 [9] Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010 [10] Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315 [11] Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165 [12] Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173 [13] Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373 [14] Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131 [15] Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167 [16] Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175 [17] Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172 [18] Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125 [19] Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 [20] Xiao-Xu Chen, Peng Xu, Jiao-Jiao Li, Thomas Walker, Guo-Qiang Yang. Decision-making in a retailer-led closed-loop supply chain involving a third-party logistics provider. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021014

2019 Impact Factor: 1.366

## Tools

Article outline

Figures and Tables