May  2021, 17(3): 1203-1233. doi: 10.3934/jimo.2020018

Robust equilibrium control-measure policy for a DC pension plan with state-dependent risk aversion under mean-variance criterion

1. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Shaanxi 710049, China

2. 

Center for Optimization Technique and Quantitative Finance, Xi'an International Academy for Mathematics and Mathematical Technology, Shaanxi 710049, China

3. 

School of Science, Xijing University, Xi'an, Shaanxi 710123, China

* Corresponding author: Zhiping Chen

Received  February 2019 Revised  July 2019 Published  May 2021 Early access  January 2020

Fund Project: This research was supported by the National Natural Science Foundation of China under Grant Numbers 11571270 and 11735011, and the World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities under Grant Number PY3A058

In reality, when facing a defined contribution (DC) pension fund investment problem, the fund manager may not have sufficient confidence in the reference model and rather considers some similar alternative models. In this paper, we investigate the robust equilibrium control-measure policy for an ambiguity-averse and risk-averse fund manger under the mean-variance (MV) criterion. The ambiguity aversion is introduced by adopting the model uncertainty robustness framework developed by Anderson. The risk aversion model is state-dependent, and takes a linear form of the current wealth level after contribution. Moreover, the fund manager faces stochastic labor income risk and allocates his wealth among a risk-free asset and a risky asset. We also propose two complicated ambiguity preference functions which are economically meaningful and facilitate analytical tractability. Due to the time-inconsistency of the resulting stochastic control problem, we attack it by using the game theoretical framework and the concept of subgame perfect Nash equilibrium. The extended Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations and the verification theorem for our problem are established. The explicit expressions for the robust equilibrium policy and the corresponding robust equilibrium value function are derived by stochastic control technique. In addition, we discuss two special cases of our model, which shows that our results extend some existing works in the literature. Finally, some numerical experiments are conducted to demonstrate the effects of model parameters on our robust equilibrium policy.

Citation: Liyuan Wang, Zhiping Chen, Peng Yang. Robust equilibrium control-measure policy for a DC pension plan with state-dependent risk aversion under mean-variance criterion. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1203-1233. doi: 10.3934/jimo.2020018
References:
[1]

E. W. Anderson, L. P. Hansen and T. J. Sargent, Robustness, detection and the price of risk, 1999. Available from: https://www.researchgate.net/profile/Lars_Hansen/publication/2637084_Robustness_Detection_and_the_Price_of_Risk/links/0deec51f6c2524ada9000000/Robustness-Detection-and-the-Price-of-Risk.pdf.

[2]

E. W. AndersonL. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123. 

[3]

S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, The Review of Financial Studies, 23 (2010), 2970-3016. 

[4]

P. Battocchio and F. Menoncin, Optimal pension management in a stochastic framework, Insurance: Mathematics and Economics, 34 (2004), 79-95.  doi: 10.1016/j.insmatheco.2003.11.001.

[5]

T. BjörkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.

[6]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.

[7]

D. BlakeD. Wright and Y. M. Zhang, Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion, Journal of Economic Dynamics and Control, 37 (2013), 195-209.  doi: 10.1016/j.jedc.2012.08.001.

[8]

Z. BodieJ. B. DetempleS. Otruba and S. Walter, Optimal consumption-portfolio choices and retirement planning, Journal of Economic Dynamics and Control, 28 (2004), 1115-1148.  doi: 10.1016/S0165-1889(03)00068-X.

[9]

A. J. G. CairnsD. Blake and K. Dowd, Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans, Journal of Economic Dynamics and Control, 30 (2006), 843-877.  doi: 10.1016/j.jedc.2005.03.009.

[10]

Z. ChenZ. F. LiY. Zeng and J. Y. Sun, Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk, Insurance: Mathematics and Economics, 75 (2017), 137-150.  doi: 10.1016/j.insmatheco.2017.05.009.

[11]

X. Y. CuiD. LiS. Y. Wang and S. S. Zhu, Better than dynamic mean-variance: Time inconsistency and free cash flow stream, Mathematical Finance, 22 (2012), 346-378.  doi: 10.1111/j.1467-9965.2010.00461.x.

[12]

X. Y. CuiL. Xu and Y. Zeng, Continuous time mean-variance portfolio optimization with piecewise state-dependent risk aversion, Optimization Letters, 10 (2016), 1681-1691.  doi: 10.1007/s11590-015-0970-8.

[13]

X. Y. CuiX. LiD. Li and Y. Shi, Time consistent behavioral portfolio policy for dynamic mean-variance formulation, Journal of the Operational Research Society, 68 (2017), 1647-1660.  doi: 10.1057/s41274-017-0179-6.

[14]

G. DeelstraM. Grasselli and P.-F. Koehl, Optimal investment strategies in the presence of a minimum guarantee, Insurance: Mathematics and Economics, 33 (2003), 189-207.  doi: 10.1016/S0167-6687(03)00153-7.

[15]

C. R. Flor and L. S. Larsen, Robust portfolio choice with stochastic interest rates, Annals of Finance, 10 (2014), 243-265.  doi: 10.1007/s10436-013-0234-5.

[16]

G. H. Guan and Z. X. Liang, Mean-variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns, Insurance: Mathematics and Economics, 61 (2015), 99-109.  doi: 10.1016/j.insmatheco.2014.12.006.

[17]

L. P. HansenT. J.SargentG. Turmuhambetova and N. Williams, Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.  doi: 10.1016/j.jet.2004.12.006.

[18]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM Journal on Control and Optimization, 50 (2012), 1548-1572.  doi: 10.1137/110853960.

[19]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991 doi: 10.1007/978-1-4612-0949-2.

[20]

F. Knight, Risk, Uncertainty and Profit, Houghton Mifflin, New York, 1921. doi: 10.1017/CBO9780511817410.005.

[21]

R. KornO. Menkens and M. Steffensen, Worst-case-optimal dynamic reinsurance for large claims, European Actuarial Journal, 2 (2012), 21-48.  doi: 10.1007/s13385-012-0050-8.

[22]

Z. X. Liang and M. Song, Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65 (2015), 66-76.  doi: 10.1016/j.insmatheco.2015.08.008.

[23]

Y. W. Li and Z. F. Li, Optimal time-consistent investment and reinsurance strategies for mean-variance insurers with state dependent risk aversion, Insurance: Mathematics and Economics, 53 (2013), 86-97.  doi: 10.1016/j.insmatheco.2013.03.008.

[24]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.

[25]

X. LinC. H. Zhang and T. K. Siu, Stochastic differential portfolio games for an insurer in a jump-diffusion risk process, Mathematical Methods of Operations Research, 75 (2012), 83-100.  doi: 10.1007/s00186-011-0376-z.

[26]

J. LiuJ. Pan and T. Wang, An equilibrium model of rare-event premia and its implication for option smirks, The Review of Financial Studies, 18 (2005), 131-164.  doi: 10.1093/rfs/hhi011.

[27]

H. Liu, Robust consumption and portfolio choice for time varying investment opportunities, Annals of Finance, 6 (2010), 435-454. 

[28]

Y. L. LiuM. Y. YangJ. Zhai and M. Y. Bai, Portfolio selection of the defined contribution pension fund with uncertain return and salary: A multi-period mean-variance model, Journal of Intelligent and Fuzzy Systems, 34 (2018), 2363-2371.  doi: 10.3233/JIFS-171440.

[29]

Q.-P. Ma, On "optimal pension management in a stochastic framework" with exponential utility, Insurance: Mathematics and Economics, 49 (2011), 61-69.  doi: 10.1016/j.insmatheco.2011.02.003.

[30]

P. J. Maenhout, Robust portfolio rules and asset pricing, The Review of Financial Studies, 17 (2004), 951-983. 

[31]

P. J. Maenhout, Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium, Journal of Economic Theory, 128 (2006), 136-163.  doi: 10.1016/j.jet.2005.12.012.

[32]

H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91. 

[33]

C. Munk and A. Rubtsov, Portfolio management with stochastic interest rates and inflation ambiguity, Annals of Finance, 10 (2014), 419-455.  doi: 10.1007/s10436-013-0238-1.

[34]

B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Fifth edition. Universitext. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03620-4.

[35]

J. PoterbaJ. RauhS. Venti and D. Wise, Defined contribution plans, defined benefit plans, and the accumulation of retirement wealth, Journal of Public Economics, 91 (2007), 2062-2086.  doi: 10.3386/w12597.

[36]

C. S. Pun and H. Y. Wong, Robust investment-reinsurance optimization with multiscale stochastic volatility, Insurance: Mathematics and Economics, 62 (2015), 245-256.  doi: 10.1016/j.insmatheco.2015.03.030.

[37]

C. S. Pun, Robust time-inconsistent stochastic control problems, Automatica, 94 (2018), 249-257.  doi: 10.1016/j.automatica.2018.04.038.

[38]

C. S. Pun, Robust time-inconsistent stochastic control problems (extended version), Working paper, 2018. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3035656.

[39]

R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, The Review of Economic Studies, (1973), 128–143. doi: 10.1007/978-1-349-15492-0_10.

[40]

E. Vigna, On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.  doi: 10.1080/14697688.2012.708778.

[41]

L. Y. Wang and Z. P. Chen, Nash equilibrium strategy for a DC pension plan with state-dependent risk aversion: A multiperiod mean-variance framework, Discrete Dynamics in Nature and Society, 2018 (2018), Art. ID 7581231, 17 pp. doi: 10.1155/2018/7581231.

[42]

L. Y. Wang and Z. P. Chen, Stochastic game theoretic formulation for a multi-period DC pension plan with state-dependent risk aversion, Mathematics, 7 (2019). doi: 10.3390/math7010108.

[43]

P. Wang and Z. F. Li, Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility, Insurance: Mathematics and Economics, 80 (2018), 67-83.  doi: 10.1016/j.insmatheco.2018.03.003.

[44]

H. L. Wu, Time-consistent strategies for a multiperiod mean-variance portfolio selection problem, Journal of Applied Mathematics, 2013 (2013), Art. ID 841627, 13 pp. doi: 10.1155/2013/841627.

[45]

H. L. WuL. Zhang and H. Chen, Nash equilibrium strategies for a defined contribution pension management, Insurance: Mathematics and Economics, 62 (2015), 202-214.  doi: 10.1016/j.insmatheco.2015.03.014.

[46]

H. WuC. Weng and Y. Zeng, Equilibrium consumption and portfolio decisions with stochastic discount rate and time-varying utility functions, OR Spectrum, 40 (2018), 541-582. 

[47]

W. D. XuC. F. Wu and H. Y. Li, Robust general equilibrium under stochastic volatility model, Finance Research Letters, 7 (2010), 224-231.  doi: 10.1016/j.frl.2010.05.002.

[48]

H. X. YaoZ. Yang and P. Chen, Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.  doi: 10.1016/j.insmatheco.2013.10.002.

[49]

B. YiZ. F. LiF. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.  doi: 10.1016/j.insmatheco.2013.08.011.

[50]

B. YiF. ViensZ. F. Li and Y. Zeng, Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria, Scandinavian Actuarial Journal, 2015 (2015), 725-751.  doi: 10.1080/03461238.2014.883085.

[51]

Y. ZengD. P. Li and A. L. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance: Mathematics and Economics, 66 (2016), 138-152.  doi: 10.1016/j.insmatheco.2015.10.012.

[52]

Y. ZengD. P. LiZ. Chen and Z. Yang, Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility, Journal of Economic Dynamics and Control, 88 (2018), 70-103.  doi: 10.1016/j.jedc.2018.01.023.

[53]

X. Zhang and T. K. Siu, Optimal investment and reinsurance of an insurer with model uncertainty, Insurance: Mathematics and Economics, 45 (2009), 81-88.  doi: 10.1016/j.insmatheco.2009.04.001.

[54]

X. X. ZhengJ. M. Zhou and Z. Y. Sun, Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model, Insurance: Mathematics and Economics, 67 (2016), 77-87.  doi: 10.1016/j.insmatheco.2015.12.008.

[55]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.

[56]

H. N. ZhuM. Cao and C. K. Zhang, Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model, Finance Research Letters, 30 (2018), 280-291.  doi: 10.1016/j.frl.2018.10.009.

show all references

References:
[1]

E. W. Anderson, L. P. Hansen and T. J. Sargent, Robustness, detection and the price of risk, 1999. Available from: https://www.researchgate.net/profile/Lars_Hansen/publication/2637084_Robustness_Detection_and_the_Price_of_Risk/links/0deec51f6c2524ada9000000/Robustness-Detection-and-the-Price-of-Risk.pdf.

[2]

E. W. AndersonL. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123. 

[3]

S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, The Review of Financial Studies, 23 (2010), 2970-3016. 

[4]

P. Battocchio and F. Menoncin, Optimal pension management in a stochastic framework, Insurance: Mathematics and Economics, 34 (2004), 79-95.  doi: 10.1016/j.insmatheco.2003.11.001.

[5]

T. BjörkA. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.  doi: 10.1111/j.1467-9965.2011.00515.x.

[6]

T. BjörkM. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.  doi: 10.1007/s00780-017-0327-5.

[7]

D. BlakeD. Wright and Y. M. Zhang, Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion, Journal of Economic Dynamics and Control, 37 (2013), 195-209.  doi: 10.1016/j.jedc.2012.08.001.

[8]

Z. BodieJ. B. DetempleS. Otruba and S. Walter, Optimal consumption-portfolio choices and retirement planning, Journal of Economic Dynamics and Control, 28 (2004), 1115-1148.  doi: 10.1016/S0165-1889(03)00068-X.

[9]

A. J. G. CairnsD. Blake and K. Dowd, Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans, Journal of Economic Dynamics and Control, 30 (2006), 843-877.  doi: 10.1016/j.jedc.2005.03.009.

[10]

Z. ChenZ. F. LiY. Zeng and J. Y. Sun, Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk, Insurance: Mathematics and Economics, 75 (2017), 137-150.  doi: 10.1016/j.insmatheco.2017.05.009.

[11]

X. Y. CuiD. LiS. Y. Wang and S. S. Zhu, Better than dynamic mean-variance: Time inconsistency and free cash flow stream, Mathematical Finance, 22 (2012), 346-378.  doi: 10.1111/j.1467-9965.2010.00461.x.

[12]

X. Y. CuiL. Xu and Y. Zeng, Continuous time mean-variance portfolio optimization with piecewise state-dependent risk aversion, Optimization Letters, 10 (2016), 1681-1691.  doi: 10.1007/s11590-015-0970-8.

[13]

X. Y. CuiX. LiD. Li and Y. Shi, Time consistent behavioral portfolio policy for dynamic mean-variance formulation, Journal of the Operational Research Society, 68 (2017), 1647-1660.  doi: 10.1057/s41274-017-0179-6.

[14]

G. DeelstraM. Grasselli and P.-F. Koehl, Optimal investment strategies in the presence of a minimum guarantee, Insurance: Mathematics and Economics, 33 (2003), 189-207.  doi: 10.1016/S0167-6687(03)00153-7.

[15]

C. R. Flor and L. S. Larsen, Robust portfolio choice with stochastic interest rates, Annals of Finance, 10 (2014), 243-265.  doi: 10.1007/s10436-013-0234-5.

[16]

G. H. Guan and Z. X. Liang, Mean-variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns, Insurance: Mathematics and Economics, 61 (2015), 99-109.  doi: 10.1016/j.insmatheco.2014.12.006.

[17]

L. P. HansenT. J.SargentG. Turmuhambetova and N. Williams, Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.  doi: 10.1016/j.jet.2004.12.006.

[18]

Y. HuH. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM Journal on Control and Optimization, 50 (2012), 1548-1572.  doi: 10.1137/110853960.

[19]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991 doi: 10.1007/978-1-4612-0949-2.

[20]

F. Knight, Risk, Uncertainty and Profit, Houghton Mifflin, New York, 1921. doi: 10.1017/CBO9780511817410.005.

[21]

R. KornO. Menkens and M. Steffensen, Worst-case-optimal dynamic reinsurance for large claims, European Actuarial Journal, 2 (2012), 21-48.  doi: 10.1007/s13385-012-0050-8.

[22]

Z. X. Liang and M. Song, Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65 (2015), 66-76.  doi: 10.1016/j.insmatheco.2015.08.008.

[23]

Y. W. Li and Z. F. Li, Optimal time-consistent investment and reinsurance strategies for mean-variance insurers with state dependent risk aversion, Insurance: Mathematics and Economics, 53 (2013), 86-97.  doi: 10.1016/j.insmatheco.2013.03.008.

[24]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.

[25]

X. LinC. H. Zhang and T. K. Siu, Stochastic differential portfolio games for an insurer in a jump-diffusion risk process, Mathematical Methods of Operations Research, 75 (2012), 83-100.  doi: 10.1007/s00186-011-0376-z.

[26]

J. LiuJ. Pan and T. Wang, An equilibrium model of rare-event premia and its implication for option smirks, The Review of Financial Studies, 18 (2005), 131-164.  doi: 10.1093/rfs/hhi011.

[27]

H. Liu, Robust consumption and portfolio choice for time varying investment opportunities, Annals of Finance, 6 (2010), 435-454. 

[28]

Y. L. LiuM. Y. YangJ. Zhai and M. Y. Bai, Portfolio selection of the defined contribution pension fund with uncertain return and salary: A multi-period mean-variance model, Journal of Intelligent and Fuzzy Systems, 34 (2018), 2363-2371.  doi: 10.3233/JIFS-171440.

[29]

Q.-P. Ma, On "optimal pension management in a stochastic framework" with exponential utility, Insurance: Mathematics and Economics, 49 (2011), 61-69.  doi: 10.1016/j.insmatheco.2011.02.003.

[30]

P. J. Maenhout, Robust portfolio rules and asset pricing, The Review of Financial Studies, 17 (2004), 951-983. 

[31]

P. J. Maenhout, Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium, Journal of Economic Theory, 128 (2006), 136-163.  doi: 10.1016/j.jet.2005.12.012.

[32]

H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91. 

[33]

C. Munk and A. Rubtsov, Portfolio management with stochastic interest rates and inflation ambiguity, Annals of Finance, 10 (2014), 419-455.  doi: 10.1007/s10436-013-0238-1.

[34]

B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Fifth edition. Universitext. Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03620-4.

[35]

J. PoterbaJ. RauhS. Venti and D. Wise, Defined contribution plans, defined benefit plans, and the accumulation of retirement wealth, Journal of Public Economics, 91 (2007), 2062-2086.  doi: 10.3386/w12597.

[36]

C. S. Pun and H. Y. Wong, Robust investment-reinsurance optimization with multiscale stochastic volatility, Insurance: Mathematics and Economics, 62 (2015), 245-256.  doi: 10.1016/j.insmatheco.2015.03.030.

[37]

C. S. Pun, Robust time-inconsistent stochastic control problems, Automatica, 94 (2018), 249-257.  doi: 10.1016/j.automatica.2018.04.038.

[38]

C. S. Pun, Robust time-inconsistent stochastic control problems (extended version), Working paper, 2018. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3035656.

[39]

R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, The Review of Economic Studies, (1973), 128–143. doi: 10.1007/978-1-349-15492-0_10.

[40]

E. Vigna, On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.  doi: 10.1080/14697688.2012.708778.

[41]

L. Y. Wang and Z. P. Chen, Nash equilibrium strategy for a DC pension plan with state-dependent risk aversion: A multiperiod mean-variance framework, Discrete Dynamics in Nature and Society, 2018 (2018), Art. ID 7581231, 17 pp. doi: 10.1155/2018/7581231.

[42]

L. Y. Wang and Z. P. Chen, Stochastic game theoretic formulation for a multi-period DC pension plan with state-dependent risk aversion, Mathematics, 7 (2019). doi: 10.3390/math7010108.

[43]

P. Wang and Z. F. Li, Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility, Insurance: Mathematics and Economics, 80 (2018), 67-83.  doi: 10.1016/j.insmatheco.2018.03.003.

[44]

H. L. Wu, Time-consistent strategies for a multiperiod mean-variance portfolio selection problem, Journal of Applied Mathematics, 2013 (2013), Art. ID 841627, 13 pp. doi: 10.1155/2013/841627.

[45]

H. L. WuL. Zhang and H. Chen, Nash equilibrium strategies for a defined contribution pension management, Insurance: Mathematics and Economics, 62 (2015), 202-214.  doi: 10.1016/j.insmatheco.2015.03.014.

[46]

H. WuC. Weng and Y. Zeng, Equilibrium consumption and portfolio decisions with stochastic discount rate and time-varying utility functions, OR Spectrum, 40 (2018), 541-582. 

[47]

W. D. XuC. F. Wu and H. Y. Li, Robust general equilibrium under stochastic volatility model, Finance Research Letters, 7 (2010), 224-231.  doi: 10.1016/j.frl.2010.05.002.

[48]

H. X. YaoZ. Yang and P. Chen, Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.  doi: 10.1016/j.insmatheco.2013.10.002.

[49]

B. YiZ. F. LiF. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.  doi: 10.1016/j.insmatheco.2013.08.011.

[50]

B. YiF. ViensZ. F. Li and Y. Zeng, Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria, Scandinavian Actuarial Journal, 2015 (2015), 725-751.  doi: 10.1080/03461238.2014.883085.

[51]

Y. ZengD. P. Li and A. L. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance: Mathematics and Economics, 66 (2016), 138-152.  doi: 10.1016/j.insmatheco.2015.10.012.

[52]

Y. ZengD. P. LiZ. Chen and Z. Yang, Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility, Journal of Economic Dynamics and Control, 88 (2018), 70-103.  doi: 10.1016/j.jedc.2018.01.023.

[53]

X. Zhang and T. K. Siu, Optimal investment and reinsurance of an insurer with model uncertainty, Insurance: Mathematics and Economics, 45 (2009), 81-88.  doi: 10.1016/j.insmatheco.2009.04.001.

[54]

X. X. ZhengJ. M. Zhou and Z. Y. Sun, Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model, Insurance: Mathematics and Economics, 67 (2016), 77-87.  doi: 10.1016/j.insmatheco.2015.12.008.

[55]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.  doi: 10.1007/s002450010003.

[56]

H. N. ZhuM. Cao and C. K. Zhang, Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model, Finance Research Letters, 30 (2018), 280-291.  doi: 10.1016/j.frl.2018.10.009.

Figure 1.  Effect of $ \mu $ on the robust equilibrium policy, and values of $ m(t,x,l) $ and $ f_{2}(t) $
Figure 2.  Effect of $ \sigma $ on the robust equilibrium policy, and values of $ m(t,x,l) $ and $ f_{2}(t) $
Figure 3.  Effects of $ \alpha $ on the robust equilibrium policy
Figure 4.  Effects of $ \varphi $ on the robust equilibrium policy
Figure 5.  Effects of $ \beta $ on the robust equilibrium policy
Figure 6.  Effects of $ \gamma $ on the robust equilibrium policy
Figure 7.  Effect of $ T $ on the robust equilibrium policy
Figure 8.  Effect of $ c $ on the robust equilibrium policy
Figure 9.  Effect of $ \xi $ on the robust equilibrium policy
Figure 10.  Effect of $ \xi $ on the discrepancy function
Figure 11.  Effect of $ X_0 $ on the robust equilibrium policy
Figure 12.  Effect of $ L_0 $ on the robust equilibrium policy
Table 1.  Parameter values
Parameter Symbol Value
Time horizon (retirement date) $T$ 5
Initial wealth $X_{0}$ 4
Initial labor income $L_{0}$ 1
Risk-free interest rate $r(t)$ 0.05
Appreciation rate of the risky asset $\mu(t)$ 0.15
Volatility rate of the risky asset $\sigma(t)$ 0.25
Appreciation rate of the labor income $\alpha(t)$ 0.08
Volatility rate of the labor income (hedgeable) $\varphi(t)$ 0.15
Volatility rate of the labor income (non-hedgeable) $\beta(t)$ 0.20
Contribution rate $c$ 0.2
Risk aversion coefficient $\gamma$ 2
Aggregate ambiguity aversion $\xi$ 1
Parameter Symbol Value
Time horizon (retirement date) $T$ 5
Initial wealth $X_{0}$ 4
Initial labor income $L_{0}$ 1
Risk-free interest rate $r(t)$ 0.05
Appreciation rate of the risky asset $\mu(t)$ 0.15
Volatility rate of the risky asset $\sigma(t)$ 0.25
Appreciation rate of the labor income $\alpha(t)$ 0.08
Volatility rate of the labor income (hedgeable) $\varphi(t)$ 0.15
Volatility rate of the labor income (non-hedgeable) $\beta(t)$ 0.20
Contribution rate $c$ 0.2
Risk aversion coefficient $\gamma$ 2
Aggregate ambiguity aversion $\xi$ 1
[1]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[2]

Matthias Büger, Marcus R.W. Martin. Stabilizing control for an unbounded state-dependent delay equation. Conference Publications, 2001, 2001 (Special) : 56-65. doi: 10.3934/proc.2001.2001.56

[3]

Pei Wang, Ling Zhang, Zhongfei Li. Asset allocation for a DC pension plan with learning about stock return predictability. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021138

[4]

H. W. J. Lee, Y. C. E. Lee, Kar Hung Wong. Differential equation approximation and enhancing control method for finding the PID gain of a quarter-car suspension model with state-dependent ODE. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2305-2330. doi: 10.3934/jimo.2019055

[5]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[6]

William Wolesensky, J. David Logan. An individual, stochastic model of growth incorporating state-dependent risk and random foraging and climate. Mathematical Biosciences & Engineering, 2007, 4 (1) : 67-84. doi: 10.3934/mbe.2007.4.67

[7]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial and Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[8]

Hao Chang, Jiaao Li, Hui Zhao. Robust optimal strategies of DC pension plans with stochastic volatility and stochastic income under mean-variance criteria. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1393-1423. doi: 10.3934/jimo.2021025

[9]

Bangyu Shen, Xiaojing Wang, Chongyang Liu. Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 369-380. doi: 10.3934/naco.2015.5.369

[10]

Madhu Jain, Sudeep Singh Sanga. Admission control for finite capacity queueing model with general retrial times and state-dependent rates. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2625-2649. doi: 10.3934/jimo.2019073

[11]

Hans-Otto Walther. On Poisson's state-dependent delay. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365

[12]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[13]

Dalila Azzam-Laouir, Fatiha Selamnia. On state-dependent sweeping process in Banach spaces. Evolution Equations and Control Theory, 2018, 7 (2) : 183-196. doi: 10.3934/eect.2018009

[14]

Josef Diblík. Long-time behavior of positive solutions of a differential equation with state-dependent delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 31-46. doi: 10.3934/dcdss.2020002

[15]

Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633

[16]

Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure and Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319

[17]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 47-66. doi: 10.3934/dcdss.2020003

[18]

Kegui Chen, Xinyu Wang, Min Huang, Wai-Ki Ching. Compensation plan, pricing and production decisions with inventory-dependent salvage value, and asymmetric risk-averse sales agent. Journal of Industrial and Management Optimization, 2018, 14 (4) : 1397-1422. doi: 10.3934/jimo.2018013

[19]

Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039

[20]

Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (544)
  • HTML views (1170)
  • Cited by (0)

Other articles
by authors

[Back to Top]