[1]
|
E. W. Anderson, L. P. Hansen and T. J. Sargent, Robustness, detection and the price of risk, 1999. Available from: https://www.researchgate.net/profile/Lars_Hansen/publication/2637084_Robustness_Detection_and_the_Price_of_Risk/links/0deec51f6c2524ada9000000/Robustness-Detection-and-the-Price-of-Risk.pdf.
|
[2]
|
E. W. Anderson, L. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123.
|
[3]
|
S. Basak and G. Chabakauri, Dynamic mean-variance asset allocation, The Review of Financial Studies, 23 (2010), 2970-3016.
|
[4]
|
P. Battocchio and F. Menoncin, Optimal pension management in a stochastic framework, Insurance: Mathematics and Economics, 34 (2004), 79-95.
doi: 10.1016/j.insmatheco.2003.11.001.
|
[5]
|
T. Björk, A. Murgoci and X. Y. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x.
|
[6]
|
T. Björk, M. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance and Stochastics, 21 (2017), 331-360.
doi: 10.1007/s00780-017-0327-5.
|
[7]
|
D. Blake, D. Wright and Y. M. Zhang, Target-driven investing: Optimal investment strategies in defined contribution pension plans under loss aversion, Journal of Economic Dynamics and Control, 37 (2013), 195-209.
doi: 10.1016/j.jedc.2012.08.001.
|
[8]
|
Z. Bodie, J. B. Detemple, S. Otruba and S. Walter, Optimal consumption-portfolio choices and retirement planning, Journal of Economic Dynamics and Control, 28 (2004), 1115-1148.
doi: 10.1016/S0165-1889(03)00068-X.
|
[9]
|
A. J. G. Cairns, D. Blake and K. Dowd, Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans, Journal of Economic Dynamics and Control, 30 (2006), 843-877.
doi: 10.1016/j.jedc.2005.03.009.
|
[10]
|
Z. Chen, Z. F. Li, Y. Zeng and J. Y. Sun, Asset allocation under loss aversion and minimum performance constraint in a DC pension plan with inflation risk, Insurance: Mathematics and Economics, 75 (2017), 137-150.
doi: 10.1016/j.insmatheco.2017.05.009.
|
[11]
|
X. Y. Cui, D. Li, S. Y. Wang and S. S. Zhu, Better than dynamic mean-variance: Time inconsistency and free cash flow stream, Mathematical Finance, 22 (2012), 346-378.
doi: 10.1111/j.1467-9965.2010.00461.x.
|
[12]
|
X. Y. Cui, L. Xu and Y. Zeng, Continuous time mean-variance portfolio optimization with piecewise state-dependent risk aversion, Optimization Letters, 10 (2016), 1681-1691.
doi: 10.1007/s11590-015-0970-8.
|
[13]
|
X. Y. Cui, X. Li, D. Li and Y. Shi, Time consistent behavioral portfolio policy for dynamic mean-variance formulation, Journal of the Operational Research Society, 68 (2017), 1647-1660.
doi: 10.1057/s41274-017-0179-6.
|
[14]
|
G. Deelstra, M. Grasselli and P.-F. Koehl, Optimal investment strategies in the presence of a minimum guarantee, Insurance: Mathematics and Economics, 33 (2003), 189-207.
doi: 10.1016/S0167-6687(03)00153-7.
|
[15]
|
C. R. Flor and L. S. Larsen, Robust portfolio choice with stochastic interest rates, Annals of Finance, 10 (2014), 243-265.
doi: 10.1007/s10436-013-0234-5.
|
[16]
|
G. H. Guan and Z. X. Liang, Mean-variance efficiency of DC pension plan under stochastic interest rate and mean-reverting returns, Insurance: Mathematics and Economics, 61 (2015), 99-109.
doi: 10.1016/j.insmatheco.2014.12.006.
|
[17]
|
L. P. Hansen, T. J.Sargent, G. Turmuhambetova and N. Williams, Robust control and model misspecification, Journal of Economic Theory, 128 (2006), 45-90.
doi: 10.1016/j.jet.2004.12.006.
|
[18]
|
Y. Hu, H. Q. Jin and X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM Journal on Control and Optimization, 50 (2012), 1548-1572.
doi: 10.1137/110853960.
|
[19]
|
I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991
doi: 10.1007/978-1-4612-0949-2.
|
[20]
|
F. Knight, Risk, Uncertainty and Profit, Houghton Mifflin, New York, 1921.
doi: 10.1017/CBO9780511817410.005.
|
[21]
|
R. Korn, O. Menkens and M. Steffensen, Worst-case-optimal dynamic reinsurance for large claims, European Actuarial Journal, 2 (2012), 21-48.
doi: 10.1007/s13385-012-0050-8.
|
[22]
|
Z. X. Liang and M. Song, Time-consistent reinsurance and investment strategies for mean-variance insurer under partial information, Insurance: Mathematics and Economics, 65 (2015), 66-76.
doi: 10.1016/j.insmatheco.2015.08.008.
|
[23]
|
Y. W. Li and Z. F. Li, Optimal time-consistent investment and reinsurance strategies for mean-variance insurers with state dependent risk aversion, Insurance: Mathematics and Economics, 53 (2013), 86-97.
doi: 10.1016/j.insmatheco.2013.03.008.
|
[24]
|
D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100.
|
[25]
|
X. Lin, C. H. Zhang and T. K. Siu, Stochastic differential portfolio games for an insurer in a jump-diffusion risk process, Mathematical Methods of Operations Research, 75 (2012), 83-100.
doi: 10.1007/s00186-011-0376-z.
|
[26]
|
J. Liu, J. Pan and T. Wang, An equilibrium model of rare-event premia and its implication for option smirks, The Review of Financial Studies, 18 (2005), 131-164.
doi: 10.1093/rfs/hhi011.
|
[27]
|
H. Liu, Robust consumption and portfolio choice for time varying investment opportunities, Annals of Finance, 6 (2010), 435-454.
|
[28]
|
Y. L. Liu, M. Y. Yang, J. Zhai and M. Y. Bai, Portfolio selection of the defined contribution pension fund with uncertain return and salary: A multi-period mean-variance model, Journal of Intelligent and Fuzzy Systems, 34 (2018), 2363-2371.
doi: 10.3233/JIFS-171440.
|
[29]
|
Q.-P. Ma, On "optimal pension management in a stochastic framework" with exponential utility, Insurance: Mathematics and Economics, 49 (2011), 61-69.
doi: 10.1016/j.insmatheco.2011.02.003.
|
[30]
|
P. J. Maenhout, Robust portfolio rules and asset pricing, The Review of Financial Studies, 17 (2004), 951-983.
|
[31]
|
P. J. Maenhout, Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium, Journal of Economic Theory, 128 (2006), 136-163.
doi: 10.1016/j.jet.2005.12.012.
|
[32]
|
H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91.
|
[33]
|
C. Munk and A. Rubtsov, Portfolio management with stochastic interest rates and inflation ambiguity, Annals of Finance, 10 (2014), 419-455.
doi: 10.1007/s10436-013-0238-1.
|
[34]
|
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Fifth edition. Universitext. Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-662-03620-4.
|
[35]
|
J. Poterba, J. Rauh, S. Venti and D. Wise, Defined contribution plans, defined benefit plans, and the accumulation of retirement wealth, Journal of Public Economics, 91 (2007), 2062-2086.
doi: 10.3386/w12597.
|
[36]
|
C. S. Pun and H. Y. Wong, Robust investment-reinsurance optimization with multiscale stochastic volatility, Insurance: Mathematics and Economics, 62 (2015), 245-256.
doi: 10.1016/j.insmatheco.2015.03.030.
|
[37]
|
C. S. Pun, Robust time-inconsistent stochastic control problems, Automatica, 94 (2018), 249-257.
doi: 10.1016/j.automatica.2018.04.038.
|
[38]
|
C. S. Pun, Robust time-inconsistent stochastic control problems (extended version), Working paper, 2018. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3035656.
|
[39]
|
R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, The Review of Economic Studies, (1973), 128–143.
doi: 10.1007/978-1-349-15492-0_10.
|
[40]
|
E. Vigna, On efficiency of mean-variance based portfolio selection in defined contribution pension schemes, Quantitative Finance, 14 (2014), 237-258.
doi: 10.1080/14697688.2012.708778.
|
[41]
|
L. Y. Wang and Z. P. Chen, Nash equilibrium strategy for a DC pension plan with state-dependent risk aversion: A multiperiod mean-variance framework, Discrete Dynamics in Nature and Society, 2018 (2018), Art. ID 7581231, 17 pp.
doi: 10.1155/2018/7581231.
|
[42]
|
L. Y. Wang and Z. P. Chen, Stochastic game theoretic formulation for a multi-period DC pension plan with state-dependent risk aversion, Mathematics, 7 (2019).
doi: 10.3390/math7010108.
|
[43]
|
P. Wang and Z. F. Li, Robust optimal investment strategy for an AAM of DC pension plans with stochastic interest rate and stochastic volatility, Insurance: Mathematics and Economics, 80 (2018), 67-83.
doi: 10.1016/j.insmatheco.2018.03.003.
|
[44]
|
H. L. Wu, Time-consistent strategies for a multiperiod mean-variance portfolio selection problem, Journal of Applied Mathematics, 2013 (2013), Art. ID 841627, 13 pp.
doi: 10.1155/2013/841627.
|
[45]
|
H. L. Wu, L. Zhang and H. Chen, Nash equilibrium strategies for a defined contribution pension management, Insurance: Mathematics and Economics, 62 (2015), 202-214.
doi: 10.1016/j.insmatheco.2015.03.014.
|
[46]
|
H. Wu, C. Weng and Y. Zeng, Equilibrium consumption and portfolio decisions with stochastic discount rate and time-varying utility functions, OR Spectrum, 40 (2018), 541-582.
|
[47]
|
W. D. Xu, C. F. Wu and H. Y. Li, Robust general equilibrium under stochastic volatility model, Finance Research Letters, 7 (2010), 224-231.
doi: 10.1016/j.frl.2010.05.002.
|
[48]
|
H. X. Yao, Z. Yang and P. Chen, Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.
doi: 10.1016/j.insmatheco.2013.10.002.
|
[49]
|
B. Yi, Z. F. Li, F. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under Heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.
doi: 10.1016/j.insmatheco.2013.08.011.
|
[50]
|
B. Yi, F. Viens, Z. F. Li and Y. Zeng, Robust optimal strategies for an insurer with reinsurance and investment under benchmark and mean-variance criteria, Scandinavian Actuarial Journal, 2015 (2015), 725-751.
doi: 10.1080/03461238.2014.883085.
|
[51]
|
Y. Zeng, D. P. Li and A. L. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance: Mathematics and Economics, 66 (2016), 138-152.
doi: 10.1016/j.insmatheco.2015.10.012.
|
[52]
|
Y. Zeng, D. P. Li, Z. Chen and Z. Yang, Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility, Journal of Economic Dynamics and Control, 88 (2018), 70-103.
doi: 10.1016/j.jedc.2018.01.023.
|
[53]
|
X. Zhang and T. K. Siu, Optimal investment and reinsurance of an insurer with model uncertainty, Insurance: Mathematics and Economics, 45 (2009), 81-88.
doi: 10.1016/j.insmatheco.2009.04.001.
|
[54]
|
X. X. Zheng, J. M. Zhou and Z. Y. Sun, Robust optimal portfolio and proportional reinsurance for an insurer under a CEV model, Insurance: Mathematics and Economics, 67 (2016), 77-87.
doi: 10.1016/j.insmatheco.2015.12.008.
|
[55]
|
X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.
doi: 10.1007/s002450010003.
|
[56]
|
H. N. Zhu, M. Cao and C. K. Zhang, Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model, Finance Research Letters, 30 (2018), 280-291.
doi: 10.1016/j.frl.2018.10.009.
|