doi: 10.3934/jimo.2020019

Side-information-induced reweighted sparse subspace clustering

1. 

School of Mathematics and Statistics, Xidian University, Xi'an 710171, Shaanxi, China

2. 

Key Laboratory of Group & Graph Theories and Applications, Chongqing University of Arts and Sciences, Chongqing 402160, China

* Corresponding author: Weiwei Wang

Received  March 2019 Revised  July 2019 Published  January 2020

Fund Project: The first author is supported by National Natural Science Foundation of China (Grants 61472303, 61772389).

Subspace clustering segments a collection of data from a union of several subspaces into clusters with each cluster corresponding to one subspace. The geometric information of the dataset reflects its intrinsic structure and can be utilized to assist the segmentation. In this paper, we propose side-information-induced reweighted sparse subspace clustering (SRSSC) for high-dimensional data clustering. In our method, the geometric information of the high-dimensional data points in a target space is utilized to induce subspace clustering as side-information. We solve the method by iterating the reweighted $ l_1 $-norm minimization to obtain the self-representation coefficients of the data and segment the data using the spectral clustering framework. We compare the performance of our proposed algorithm with some state-of-the-art algorithms using synthetic data and three famous real datasets. Our proposed SRSSC algorithm is the simplest but the most effective. In the experiments, the results of these clustering algorithms verify the effectiveness of our proposed algorithm.

Citation: Hua Huang, Weiwei Wang, Chengwu Lu, Xiangchu Feng, Ruiqiang He. Side-information-induced reweighted sparse subspace clustering. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020019
References:
[1]

R. G. Baraniuk and et al., Applications of sparse representation and compressive sensing [scanning the issue], Proceedings of the IEEE 98, 6 (2010), 906–909. Google Scholar

[2]

S. Boyd and et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations & Trends in Machine Learning, 3 (2010), 1–122. Google Scholar

[3] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511804441.  Google Scholar
[4]

M. Brbić and I. Kopriva, $\ell_0$-Motivated Low-Rank Sparse Subspace Clustering, IEEE Transactions on Cybernetics, 2018. Google Scholar

[5]

E. J. CandesM. B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted $l_1$minimization, Journal of Fourier Analysis & Applications, 14 (2008), 877-905.  doi: 10.1007/s00041-008-9045-x.  Google Scholar

[6]

H. Z. Chen and et al., Discriminative and coherent subspace clustering, Neurocomputing, 284 (2018), 177–186. Google Scholar

[7]

H. Z. Chen, W. Wang and X. Feng, Structured sparse subspace clustering with grouping-effect-within-cluster, Pattern Recognition, (2018), S0031320318301948. Google Scholar

[8]

E. Elhamifar and R. Vidal, Sparse subspace clustering: Algorithm, theory, and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 2765-2781.   Google Scholar

[9]

M. Fazel, H. Hindi and S. P. Boyd, Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices., American Control Conference, Proceedings of the 2003 IEEE, (2003). Google Scholar

[10]

A. S. GeorghiadesP. N. Belhumeur and D. J. Kriegman, From few to many: Illumination cone models for face recognition under variable lighting and pose, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (2001), 643-660.   Google Scholar

[11]

I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm, IEEE Transactions on Signal Processing, 45 (2002), 600-616.   Google Scholar

[12]

M. Grant, S. Boyd and Y. Ye, CVX: Matlab software for disciplined convex programming, (2008). Google Scholar

[13]

H. Hu, Z. Lin, J. Feng and et al., Smooth representation clustering, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2014), 3834–3841. Google Scholar

[14]

J. J. Hull, A database for handwritten text recognition research, IEEE Trans. Pattern Anal. Mach. Intell., 16 (1994). Google Scholar

[15]

V. C. Klema and A. J. Laub, The singular value decomposition: Its computation and some applications, IEEE Transactions on Automatic Control, 25 (1980), 164-176.  doi: 10.1109/TAC.1980.1102314.  Google Scholar

[16]

V. P. Kshirsagar, M. R. Baviskar and M. E. Gaikwad, Face Recognition Using Eigenfaces, International Conference on Computer Research & Development, 2011. Google Scholar

[17]

K. C. LeeJ. Ho and D. J. Kriegman, Acquiring linear subspaces for face recognition under variable lighting, IEEE Transactions on Pattern Analysis & Machine Intelligence, 27 (2005), 684-698.   Google Scholar

[18]

C.-G. LiC. You and R. Vidal., Structured sparse subspace clustering: A joint affinity learning and subspace clustering framework, IEEE Transactions on Image Processing, 26 (2017), 2988-3001.  doi: 10.1109/TIP.2017.2691557.  Google Scholar

[19]

C. L. Liu and et al., Handwritten digit recognition: Benchmarking of state-of-the-art techniques, Pattern Recognition, 36 (2003), 2271–2285. Google Scholar

[20]

G. C. Liu and et al., Robust recovery of subspace structures by low-rank representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 171–184. Google Scholar

[21]

C. Y. Lu, H. Min, Z. Q. Zhao and et al., Robust and efficient subspace segmentation via least squares regression, European Conference on Computer Vision. Springer, Berlin, Heidelberg, (2012), 347–360. Google Scholar

[22]

U. von Luxburg, A tutorial on spectral clustering, Statistics and Computing, 17 (2007), 395-416.  doi: 10.1007/s11222-007-9033-z.  Google Scholar

[23]

S. A. Nene, S. K. Nayar and H. Murase, Columbia Object Image Library (COIL-20) (CUCS-005-96), Department of Computer Science, Columbia University, 1996. Google Scholar

[24]

N. R. Pal and K. P. Sankar, A review on image segmentation techniques, Pattern Recognition, 26 (1993), 1277-1294.   Google Scholar

[25]

P. Wang and et al., Structural Reweight Sparse Subspace Clustering, Neural Processing Letters, 2018. Google Scholar

[26]

J. B. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (2000), 888-905.   Google Scholar

[27]

R. Tibshirani, Regression Shrinkage and Selection via the LASSO: A retrospective., Journal of the Royal Statistical Society. Series B: Methodological, 73 (2011), 273-282.  doi: 10.1111/j.1467-9868.2011.00771.x.  Google Scholar

[28]

C. Tomasi and T. Kanade, Shape and motion from image streams under orthography: A factorization method, International Journal of Computer Vision, 9 (1992), 137-154.   Google Scholar

[29]

R. Tron and R. Vidal, A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms, 2007 IEEE Conference on Computer Vision and Pattern Recognition IEEE Computer Society, 2007. Google Scholar

[30]

R. Vidal, Subspace clustering, Signal Processing Magazine IEEE, 28 (2011), 52-68.   Google Scholar

[31]

W. W. WangC. Y. ChenH. Z. Chen and X. C. Feng, Unified discriminative and coherent semi-supervised subspace clustering, IEEE Transactions on Image Processing, 27 (2018), 2461-2470.  doi: 10.1109/TIP.2018.2806278.  Google Scholar

[32]

W. W. Wang and C. L. Wu, Image segmentation by correlation adaptive weighted regression, Neurocomputing, 267 (2017), 426-435.   Google Scholar

[33]

W. W. WangB. Zhang and X. Feng, Subspace segmentation by correlation adaptive regression, IEEE Transactions on Circuits & Systems for Video Technology, 99 (2017), 1-1.   Google Scholar

[34]

J. W. Wong, Signal-to-Noise Ratio (SNR), Encyclopedia of Radiation Oncology, 2013. Google Scholar

[35]

J. Xu, K. Xu, K. Chen and et al., Reweighted sparse subspace clustering, Computer Vision and Image Understanding, 138 (2015), 25–37. Google Scholar

[36]

J. Y. Yan and M. Pollefeys, A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate, Computer Vision-ECCV 2006, 2006. Google Scholar

[37]

Y. Yang, J. Feng, N. Jojic and et al., $\ell^{0} $-sparse subspace clustering, European Conference on Computer Vision, Springer, Cham, (2016), 731–747. Google Scholar

[38]

T. ZhangA. SzlamY. Wang and G. Lerman, Hybrid linear modeling via local best-fit flats, International Journal of Computer Vision, 100 (2012), 217-240.  doi: 10.1007/s11263-012-0535-6.  Google Scholar

show all references

References:
[1]

R. G. Baraniuk and et al., Applications of sparse representation and compressive sensing [scanning the issue], Proceedings of the IEEE 98, 6 (2010), 906–909. Google Scholar

[2]

S. Boyd and et al., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations & Trends in Machine Learning, 3 (2010), 1–122. Google Scholar

[3] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.  doi: 10.1017/CBO9780511804441.  Google Scholar
[4]

M. Brbić and I. Kopriva, $\ell_0$-Motivated Low-Rank Sparse Subspace Clustering, IEEE Transactions on Cybernetics, 2018. Google Scholar

[5]

E. J. CandesM. B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted $l_1$minimization, Journal of Fourier Analysis & Applications, 14 (2008), 877-905.  doi: 10.1007/s00041-008-9045-x.  Google Scholar

[6]

H. Z. Chen and et al., Discriminative and coherent subspace clustering, Neurocomputing, 284 (2018), 177–186. Google Scholar

[7]

H. Z. Chen, W. Wang and X. Feng, Structured sparse subspace clustering with grouping-effect-within-cluster, Pattern Recognition, (2018), S0031320318301948. Google Scholar

[8]

E. Elhamifar and R. Vidal, Sparse subspace clustering: Algorithm, theory, and applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 2765-2781.   Google Scholar

[9]

M. Fazel, H. Hindi and S. P. Boyd, Log-det heuristic for matrix rank minimization with applications to Hankel and Euclidean distance matrices., American Control Conference, Proceedings of the 2003 IEEE, (2003). Google Scholar

[10]

A. S. GeorghiadesP. N. Belhumeur and D. J. Kriegman, From few to many: Illumination cone models for face recognition under variable lighting and pose, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23 (2001), 643-660.   Google Scholar

[11]

I. F. Gorodnitsky and B. D. Rao, Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm, IEEE Transactions on Signal Processing, 45 (2002), 600-616.   Google Scholar

[12]

M. Grant, S. Boyd and Y. Ye, CVX: Matlab software for disciplined convex programming, (2008). Google Scholar

[13]

H. Hu, Z. Lin, J. Feng and et al., Smooth representation clustering, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2014), 3834–3841. Google Scholar

[14]

J. J. Hull, A database for handwritten text recognition research, IEEE Trans. Pattern Anal. Mach. Intell., 16 (1994). Google Scholar

[15]

V. C. Klema and A. J. Laub, The singular value decomposition: Its computation and some applications, IEEE Transactions on Automatic Control, 25 (1980), 164-176.  doi: 10.1109/TAC.1980.1102314.  Google Scholar

[16]

V. P. Kshirsagar, M. R. Baviskar and M. E. Gaikwad, Face Recognition Using Eigenfaces, International Conference on Computer Research & Development, 2011. Google Scholar

[17]

K. C. LeeJ. Ho and D. J. Kriegman, Acquiring linear subspaces for face recognition under variable lighting, IEEE Transactions on Pattern Analysis & Machine Intelligence, 27 (2005), 684-698.   Google Scholar

[18]

C.-G. LiC. You and R. Vidal., Structured sparse subspace clustering: A joint affinity learning and subspace clustering framework, IEEE Transactions on Image Processing, 26 (2017), 2988-3001.  doi: 10.1109/TIP.2017.2691557.  Google Scholar

[19]

C. L. Liu and et al., Handwritten digit recognition: Benchmarking of state-of-the-art techniques, Pattern Recognition, 36 (2003), 2271–2285. Google Scholar

[20]

G. C. Liu and et al., Robust recovery of subspace structures by low-rank representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2013), 171–184. Google Scholar

[21]

C. Y. Lu, H. Min, Z. Q. Zhao and et al., Robust and efficient subspace segmentation via least squares regression, European Conference on Computer Vision. Springer, Berlin, Heidelberg, (2012), 347–360. Google Scholar

[22]

U. von Luxburg, A tutorial on spectral clustering, Statistics and Computing, 17 (2007), 395-416.  doi: 10.1007/s11222-007-9033-z.  Google Scholar

[23]

S. A. Nene, S. K. Nayar and H. Murase, Columbia Object Image Library (COIL-20) (CUCS-005-96), Department of Computer Science, Columbia University, 1996. Google Scholar

[24]

N. R. Pal and K. P. Sankar, A review on image segmentation techniques, Pattern Recognition, 26 (1993), 1277-1294.   Google Scholar

[25]

P. Wang and et al., Structural Reweight Sparse Subspace Clustering, Neural Processing Letters, 2018. Google Scholar

[26]

J. B. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (2000), 888-905.   Google Scholar

[27]

R. Tibshirani, Regression Shrinkage and Selection via the LASSO: A retrospective., Journal of the Royal Statistical Society. Series B: Methodological, 73 (2011), 273-282.  doi: 10.1111/j.1467-9868.2011.00771.x.  Google Scholar

[28]

C. Tomasi and T. Kanade, Shape and motion from image streams under orthography: A factorization method, International Journal of Computer Vision, 9 (1992), 137-154.   Google Scholar

[29]

R. Tron and R. Vidal, A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms, 2007 IEEE Conference on Computer Vision and Pattern Recognition IEEE Computer Society, 2007. Google Scholar

[30]

R. Vidal, Subspace clustering, Signal Processing Magazine IEEE, 28 (2011), 52-68.   Google Scholar

[31]

W. W. WangC. Y. ChenH. Z. Chen and X. C. Feng, Unified discriminative and coherent semi-supervised subspace clustering, IEEE Transactions on Image Processing, 27 (2018), 2461-2470.  doi: 10.1109/TIP.2018.2806278.  Google Scholar

[32]

W. W. Wang and C. L. Wu, Image segmentation by correlation adaptive weighted regression, Neurocomputing, 267 (2017), 426-435.   Google Scholar

[33]

W. W. WangB. Zhang and X. Feng, Subspace segmentation by correlation adaptive regression, IEEE Transactions on Circuits & Systems for Video Technology, 99 (2017), 1-1.   Google Scholar

[34]

J. W. Wong, Signal-to-Noise Ratio (SNR), Encyclopedia of Radiation Oncology, 2013. Google Scholar

[35]

J. Xu, K. Xu, K. Chen and et al., Reweighted sparse subspace clustering, Computer Vision and Image Understanding, 138 (2015), 25–37. Google Scholar

[36]

J. Y. Yan and M. Pollefeys, A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate, Computer Vision-ECCV 2006, 2006. Google Scholar

[37]

Y. Yang, J. Feng, N. Jojic and et al., $\ell^{0} $-sparse subspace clustering, European Conference on Computer Vision, Springer, Cham, (2016), 731–747. Google Scholar

[38]

T. ZhangA. SzlamY. Wang and G. Lerman, Hybrid linear modeling via local best-fit flats, International Journal of Computer Vision, 100 (2012), 217-240.  doi: 10.1007/s11263-012-0535-6.  Google Scholar

Figure 1.  Illustration of a simple instance of subspace clustering
Figure 2.  Angles of pairs of data in the databases
Figure 3.  Convergence of SRSSC on the Extended YaleB dataset
Figure 4.  Visualization of the similarity matrices that were obtained by the different methods
Figure 5.  Some sample images from the Extended Yale B database
Figure 6.  The average computation times of the different algorithms using the Yale B dataset
Figure 7.  Some sample images from the COIL 20 database (top) and the images that belong to the same object (bottom)
Figure 8.  Some sample images from the USPS database
Table 1.  Performance comparison of the different algorithms using the synthetic data
Algorithms LSR SMR LRR SSC StrSSC RSSC Ours
Accuracy Mean 93.57% 94.35% 92.46% 94.04% 94.08% 96.60% 97.00%
Median 92.85% 94.07% 92.13% 93.60% 93.70% 96.10% 96.90%
Algorithms LSR SMR LRR SSC StrSSC RSSC Ours
Accuracy Mean 93.57% 94.35% 92.46% 94.04% 94.08% 96.60% 97.00%
Median 92.85% 94.07% 92.13% 93.60% 93.70% 96.10% 96.90%
Table 2.  The clustering errors (%) of some different algorithms using the Extended Yale B dataset
No. of subject Algorithms LSR SMR LRR SSC StrSSC RSSC Ours
2 Subjects Mean 7.35 1.75 2.13 1.87 1.23 0.57 0.48
Median 7.03 0.78 0.78 0 0 0 0
3 Subjects Mean 9.92 3.03 3.49 3.29 2.84 1.08 0.78
Median 10.41 2.08 2.08 0.52 0.52 0 0.52
4 Subjects Mean 13.66 3.25 4.86 3.80 2.95 1.65 1.07
Median 14.07 2.34 3.91 1.95 0.78 0.39 0.39
5 Subjects Mean 17.56 3.91 5.92 4.33 3.31 2.21 1.40
Median 17.81 2.50 4.99 2.50 1.25 0.62 0.62
6 Subjects Mean 20.95 5.28 6.83 4.87 3.73 2.79 1.68
Median 21.07 2.86 5.99 3.39 2.08 1.30 1.04
7 Subjects Mean 24.31 6.38 7.75 5.40 4.01 3.43 2.03
Median 24.10 3.13 7.14 4.46 2.68 1.79 1.34
8 Subjects Mean 27.52 6.83 11.05 5.92 4.38 3.98 2.59
Median 27.83 3.71 7.42 4.69 3.13 1.86 1.56
9 Subjects Mean 31.01 7.14 10.32 6.46 4.56 4.55 2.84
Median 31.42 4.51 7.81 4.77 3.65 2.43 1.65
10 Subjects Mean 33.49 7.81 16.95 7.40 4.74 4.90 3.33
Median 32.81 7.03 18.91 5.63 4.22 3.59 2.03
No. of subject Algorithms LSR SMR LRR SSC StrSSC RSSC Ours
2 Subjects Mean 7.35 1.75 2.13 1.87 1.23 0.57 0.48
Median 7.03 0.78 0.78 0 0 0 0
3 Subjects Mean 9.92 3.03 3.49 3.29 2.84 1.08 0.78
Median 10.41 2.08 2.08 0.52 0.52 0 0.52
4 Subjects Mean 13.66 3.25 4.86 3.80 2.95 1.65 1.07
Median 14.07 2.34 3.91 1.95 0.78 0.39 0.39
5 Subjects Mean 17.56 3.91 5.92 4.33 3.31 2.21 1.40
Median 17.81 2.50 4.99 2.50 1.25 0.62 0.62
6 Subjects Mean 20.95 5.28 6.83 4.87 3.73 2.79 1.68
Median 21.07 2.86 5.99 3.39 2.08 1.30 1.04
7 Subjects Mean 24.31 6.38 7.75 5.40 4.01 3.43 2.03
Median 24.10 3.13 7.14 4.46 2.68 1.79 1.34
8 Subjects Mean 27.52 6.83 11.05 5.92 4.38 3.98 2.59
Median 27.83 3.71 7.42 4.69 3.13 1.86 1.56
9 Subjects Mean 31.01 7.14 10.32 6.46 4.56 4.55 2.84
Median 31.42 4.51 7.81 4.77 3.65 2.43 1.65
10 Subjects Mean 33.49 7.81 16.95 7.40 4.74 4.90 3.33
Median 32.81 7.03 18.91 5.63 4.22 3.59 2.03
Table 3.  The clustering errors (%) of some comparative algorithms using the COIL 20 dataset
No. of subject Algorithms LSR SMR LRR SSC StrSSC RSSC Ours
2 Subjects Mean 15.05 13.75 14.86 8.13 0.76 1.35 0.43
Median 13.91 10.42 13.07 0 0 0 0
3 Subjects Mean 22.16 21.97 21.81 10.87 1.86 1.37 0.72
Median 20.22 19.44 19.65 1.85 0 0 0
20 Subjects Mean(Mdian) 25.49 24.72 24.67 20.07 15.73 16.32 7.78
No. of subject Algorithms LSR SMR LRR SSC StrSSC RSSC Ours
2 Subjects Mean 15.05 13.75 14.86 8.13 0.76 1.35 0.43
Median 13.91 10.42 13.07 0 0 0 0
3 Subjects Mean 22.16 21.97 21.81 10.87 1.86 1.37 0.72
Median 20.22 19.44 19.65 1.85 0 0 0
20 Subjects Mean(Mdian) 25.49 24.72 24.67 20.07 15.73 16.32 7.78
Table 4.  The clustering errors (%) of some comparative algorithms using the USPS dataset
No. of subject Algorithms LSR SMR LRR SSC StrSSC RSSC Ours
2 Subjects Mean 15.49 15.25 14.76 11.80 11.48 10.90 10.80
Median 13.91 13.42 13.07 9.00 8.50 9.50 7.00
3 Subjects Mean 29.13 28.91 28.81 27.59 27.88 27.44 26.67
Median 27.02 16.34 26.37 21.83 25.67 23.82 21.33
10 Subjects Mean(Median) 46.25 45.97 45.53 44.89 44.25 44.03 43.95
No. of subject Algorithms LSR SMR LRR SSC StrSSC RSSC Ours
2 Subjects Mean 15.49 15.25 14.76 11.80 11.48 10.90 10.80
Median 13.91 13.42 13.07 9.00 8.50 9.50 7.00
3 Subjects Mean 29.13 28.91 28.81 27.59 27.88 27.44 26.67
Median 27.02 16.34 26.37 21.83 25.67 23.82 21.33
10 Subjects Mean(Median) 46.25 45.97 45.53 44.89 44.25 44.03 43.95
[1]

Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems & Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257

[2]

Zhaohui Guo, Stanley Osher. Template matching via $l_1$ minimization and its application to hyperspectral data. Inverse Problems & Imaging, 2011, 5 (1) : 19-35. doi: 10.3934/ipi.2011.5.19

[3]

Yingying Li, Stanley Osher, Richard Tsai. Heat source identification based on $l_1$ constrained minimization. Inverse Problems & Imaging, 2014, 8 (1) : 199-221. doi: 10.3934/ipi.2014.8.199

[4]

Haixia Liu, Jian-Feng Cai, Yang Wang. Subspace clustering by (k,k)-sparse matrix factorization. Inverse Problems & Imaging, 2017, 11 (3) : 539-551. doi: 10.3934/ipi.2017025

[5]

Baolan Yuan, Wanjun Zhang, Yubo Yuan. A Max-Min clustering method for $k$-means algorithm of data clustering. Journal of Industrial & Management Optimization, 2012, 8 (3) : 565-575. doi: 10.3934/jimo.2012.8.565

[6]

Guojun Gan, Kun Chen. A soft subspace clustering algorithm with log-transformed distances. Big Data & Information Analytics, 2016, 1 (1) : 93-109. doi: 10.3934/bdia.2016.1.93

[7]

Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems & Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295

[8]

Vladimir Gaitsgory, Tanya Tarnopolskaya. Threshold value of the penalty parameter in the minimization of $L_1$-penalized conditional value-at-risk. Journal of Industrial & Management Optimization, 2013, 9 (1) : 191-204. doi: 10.3934/jimo.2013.9.191

[9]

Takashi Hara and Gordon Slade. The incipient infinite cluster in high-dimensional percolation. Electronic Research Announcements, 1998, 4: 48-55.

[10]

Daniel Mckenzie, Steven Damelin. Power weighted shortest paths for clustering Euclidean data. Foundations of Data Science, 2019, 1 (3) : 307-327. doi: 10.3934/fods.2019014

[11]

Michael Herty, Lorenzo Pareschi, Giuseppe Visconti. Mean field models for large data–clustering problems. Networks & Heterogeneous Media, 2020, 15 (3) : 463-487. doi: 10.3934/nhm.2020027

[12]

Elissar Nasreddine. Two-dimensional individual clustering model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 307-316. doi: 10.3934/dcdss.2014.7.307

[13]

Satoshi Ito, Soon-Yi Wu, Ting-Jang Shiu, Kok Lay Teo. A numerical approach to infinite-dimensional linear programming in $L_1$ spaces. Journal of Industrial & Management Optimization, 2010, 6 (1) : 15-28. doi: 10.3934/jimo.2010.6.15

[14]

Wayne B. Hayes, Kenneth R. Jackson, Carmen Young. Rigorous high-dimensional shadowing using containment: The general case. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 329-342. doi: 10.3934/dcds.2006.14.329

[15]

Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262

[16]

Yongbin Ou, Cun-Quan Zhang. A new multimembership clustering method. Journal of Industrial & Management Optimization, 2007, 3 (4) : 619-624. doi: 10.3934/jimo.2007.3.619

[17]

Gautier Picot. Energy-minimal transfers in the vicinity of the lagrangian point $L_1$. Conference Publications, 2011, 2011 (Special) : 1196-1205. doi: 10.3934/proc.2011.2011.1196

[18]

Yaxian Xu, Ajay Jasra. Particle filters for inference of high-dimensional multivariate stochastic volatility models with cross-leverage effects. Foundations of Data Science, 2019, 1 (1) : 61-85. doi: 10.3934/fods.2019003

[19]

Juncheng Wei, Jun Yang. Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 465-508. doi: 10.3934/dcds.2008.22.465

[20]

Yupeng Li, Wuchen Li, Guo Cao. Image segmentation via $ L_1 $ Monge-Kantorovich problem. Inverse Problems & Imaging, 2019, 13 (4) : 805-826. doi: 10.3934/ipi.2019037

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (70)
  • HTML views (301)
  • Cited by (0)

[Back to Top]