doi: 10.3934/jimo.2020021

A goethite process modeling method by asynchronous fuzzy cognitive Network based on an improved constrained chicken swarm optimization algorithm

School of Automation, Central South University, Changsha 410083, China

* Corresponding author: Jiayang Dai

Received  June 2019 Revised  August 2019 Published  January 2020

Fund Project: This research is supported by the Program of National Science Foundation of China, grant number 61673339 and the Program of National Science Foundation of Hunan Province, grant number 2017JJ2329.

In order to solve the problem that the mechanism model of nonlinear system with uncertainty is difficult to establish, a modeling method of nonlinear system based on Asynchronous Fuzzy Cognitive Network (AFCN) is proposed. This method combines fuzzy cognitive network with time-lag system, and extends the node state values and weights of fuzzy cognitive network to the time interval, which enhances the adaptability of the model. At the same time an improved constrained chicken swarm optimization algorithm(ICCSOA) is proposed to identify model parameters of AFCN. A lag matrix corresponding to the actual measured values of the system lag of the nodes in the AFCN model is introduced, and a correction term including the difference between the measured values and the predicted values of the system is added to the model parameter updating mechanism. The simulation experiment results of goethite process system shows this modeling method can be used to model complex systems with uncertainties or partial missing data. The control model based on the established system model can make correct control decisions. ICCSOA has the advantages of fast convergence speed and accurate learning results, whose global search ability and convergence accuracy are higher than those of CSO algorithm, which can be widely used to the modeling of uncertain systems.

Citation: Junjie Peng, Ning Chen, Jiayang Dai, Weihua Gui. A goethite process modeling method by asynchronous fuzzy cognitive Network based on an improved constrained chicken swarm optimization algorithm. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2020021
References:
[1]

A. P. Antigoni and P. P. Groumpos, Modeling of parkinson's disease using fuzzy cognitive maps and non-linear hebbian learning, International Journal on Artificial Intelligence Tools, 23 (2014), 1450010.   Google Scholar

[2]

N. ChenJ. Y. DaiX. J. ZhouQ. Q. Yang and W. H. Gui, Distributed model predictive control of iron precipitation process by goethite based on dual iterative method, International Journal of Control Automation and Systems, 17 (2019), 1233-1245.  doi: 10.1007/s12555-017-0742-6.  Google Scholar

[3]

N. ChenJ. Y. DaiW. H. GuiY. Q. Guo and J. Q. Zhou, A hybrid prediction model with a selectively updating strategy for iron removal process in zinc hydrometallurgy, Science China Information Sciences, 63 (2020), 119205.  doi: 10.1007/s11432-018-9711-2.  Google Scholar

[4]

N. ChenY. FanW. H. GuiC. H. Yang and Z. H. Jiang, Hybrid modeling and control of iron precipitation by goethite process, Chinese Journal of Nonferrous Metals, 24 (2014), 254-261.   Google Scholar

[5]

B. ChristenC. KjeldsenT. Dalgaard and J. Martin-Ortega, Can fuzzy cognitive mapping help in agricultural policy design and communication?, Land Use Policy, 45 (2015), 64-75.  doi: 10.1016/j.landusepol.2015.01.001.  Google Scholar

[6]

N. ChenJ. Q. ZhouJ. J. PengW. H. Gui and J. Y. Dai, Modeling of goethite iron precipitation process based on time-delay fuzzy gray cognitive network, Journal of Central South University, 26 (2019), 63-74.  doi: 10.1007/s11771-019-3982-1.  Google Scholar

[7]

N. ChenJ. J. PengL. WangY. Q. Guo and W. H. Gui, Fuzzy grey cognitive networks modeling and its application, Acta Automatica Sinica, 44 (2018), 1227-1236.   Google Scholar

[8]

N. ChenL. WangJ. J. PengB. Liu and W. H. Gui, Improved nonlinear Hebbian learning algorithm based on fuzzy cognitive networks model, Control Theory and Applications, 33 (2016), 1273-1280.   Google Scholar

[9]

Y. G. DengQ. Y. ChenZ. L. Yin and P. M. Zhang, Iron removal from zine leaching solution by goethite method, Non-ferrous Metal, 62 (2014), 80-84.   Google Scholar

[10]

Z. DjaafarA. Yahia and N. Farid, Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems, Computers and Industrial Engineering, 129 (2019), 377-391.   Google Scholar

[11]

S. Fatahi and H. Moradi, A fuzzy cognitive map model to calculate a user's desirability based on personality in e-learning environments, Computers in Human Behavior, 63 (2016), 272-281.  doi: 10.1016/j.chb.2016.05.041.  Google Scholar

[12]

B. Kosko, Fuzzy cognitive maps, International Journal of Man-Machine Studie, 24 (1986), 65-75.  doi: 10.1016/S0020-7373(86)80040-2.  Google Scholar

[13]

V. Kreinovich and C. D. Stylios, Why fuzzy cognitive maps are efficient, International Journal of Computers Communications & Control, 10 (2015), 825-833.  doi: 10.15837/ijccc.2015.6.2073.  Google Scholar

[14]

T. KottasD. Stimoniaris and D. Tsiamitros, New operation scheme and control of Smart Grids using Fuzzy Cognitive Networks, PowerTech, 2015 IEEE Eindhoven, 63 (2015), 1-5.  doi: 10.1109/PTC.2015.7232563.  Google Scholar

[15]

D. B. Li and J. M. Jiang, Present situation and development trend of zinc smelting technology at home and abroad, China Metal Bulletin, 6 (2015), 41-44.   Google Scholar

[16]

P. C. MarchalJ. G. García and J. G. Ortega, Application of fuzzy cognitive maps and run-to-run control to a decision support system for global set-point determination, IEEE Transactions on Systems Man & Cybernetics Systems, 47 (2017), 2256-2267.  doi: 10.1109/TSMC.2016.2646762.  Google Scholar

[17]

A. Mourhir, E. I. Papageorgiou, K. Kokkinos and T. Rachidi, Exploring precision farming scenarios using Fuzzy Cognitive Maps, Sustainability, 9 7 (2017), 1241. doi: 10.3390/su9071241.  Google Scholar

[18]

X. B. MengY. Liu and X. Z. Gao, A new bio-inspired algorism: Chicken swarm optimization, Proc of International Conference in Swarm of Intelligence, Cham: Springer, (2014), 86-94.   Google Scholar

[19]

M. Obiedat and S. Samarasinghe, A novel semi-quantitative Fuzzy Cognitive Map model for complex systems for addressing challenging participatory real life problems, Applied Soft Computing, 48 (2016), 91-110.  doi: 10.1016/j.asoc.2016.06.001.  Google Scholar

[20]

E. I. PapageorgiouK. D. Aggelopoulou and T. A. Gemtos, Yield prediction in apples using Fuzzy Cognitive Map learning approach, Computers & Electronics in Agriculture, 91 (2013), 19-29.  doi: 10.1016/j.compag.2012.11.008.  Google Scholar

[21]

K. E. ParsopoulosE. I. PapagergiouP. P. Groumpos and M. N. Vrahatis, A first study of fuzzy cognitive maps learning using particle swarm optimization, Proceedings of IEEE Congress on Evolutionary Computation 2003, (2003), 1440-1447.  doi: 10.1109/CEC.2003.1299840.  Google Scholar

[22]

J. Solana-GutiérrezG. RincónC. Alonso and D. García-de-Jalón, Using fuzzy cognitive maps for predicting river managementresponses: A case study of the Esla River basin, Spain, Ecological Modelling, 360 (2017), 260-269.   Google Scholar

[23]

W. StachL. KurganW. Pedrycz and M. Reformat, Genetic learning of fuzzy cognitive maps, Fuzzy Sets and Systems, 153 (2005), 371-401.  doi: 10.1016/j.fss.2005.01.009.  Google Scholar

[24]

D. H. WuS. P. Xu and F. Kong, Convergence analysis and improvement of the chicken swarm optimization algorithm, IEEE Access, 4 (2019), 9400-9412.  doi: 10.1109/ACCESS.2016.2604738.  Google Scholar

[25]

B. Wang, W. Li, X. H. Chen and H. H. Chen, Improved chicken swarm algorithms based on chaos theory and its application in wind power interval prediction, Mathematical Problems in Engineering, (2019), Art. ID 1240717, 10 pp. doi: 10.1155/2019/1240717.  Google Scholar

[26]

Z. Q. WuD. Q. Yu and X. H. Kang, Application of improved chicken swarm optimization for MPPT in photovoltaic system, Optimal Control Applications and Method, 39 (2018), 1029-1042.  doi: 10.1002/oca.2394.  Google Scholar

[27]

X. W. YuL. X. Zhou and X. Y. Li, A novel hybrid localization scheme for deep mine based on wheel graph and chicken swarm optimization, Computer Networks, 154 (2019), 73-78.  doi: 10.1016/j.comnet.2019.02.011.  Google Scholar

[28]

Y. L. Zhang, Modeling and Control of Dynamic System Based on Fuzzy Cognitive Maps, Dalian University of Technology, 2012. Google Scholar

show all references

References:
[1]

A. P. Antigoni and P. P. Groumpos, Modeling of parkinson's disease using fuzzy cognitive maps and non-linear hebbian learning, International Journal on Artificial Intelligence Tools, 23 (2014), 1450010.   Google Scholar

[2]

N. ChenJ. Y. DaiX. J. ZhouQ. Q. Yang and W. H. Gui, Distributed model predictive control of iron precipitation process by goethite based on dual iterative method, International Journal of Control Automation and Systems, 17 (2019), 1233-1245.  doi: 10.1007/s12555-017-0742-6.  Google Scholar

[3]

N. ChenJ. Y. DaiW. H. GuiY. Q. Guo and J. Q. Zhou, A hybrid prediction model with a selectively updating strategy for iron removal process in zinc hydrometallurgy, Science China Information Sciences, 63 (2020), 119205.  doi: 10.1007/s11432-018-9711-2.  Google Scholar

[4]

N. ChenY. FanW. H. GuiC. H. Yang and Z. H. Jiang, Hybrid modeling and control of iron precipitation by goethite process, Chinese Journal of Nonferrous Metals, 24 (2014), 254-261.   Google Scholar

[5]

B. ChristenC. KjeldsenT. Dalgaard and J. Martin-Ortega, Can fuzzy cognitive mapping help in agricultural policy design and communication?, Land Use Policy, 45 (2015), 64-75.  doi: 10.1016/j.landusepol.2015.01.001.  Google Scholar

[6]

N. ChenJ. Q. ZhouJ. J. PengW. H. Gui and J. Y. Dai, Modeling of goethite iron precipitation process based on time-delay fuzzy gray cognitive network, Journal of Central South University, 26 (2019), 63-74.  doi: 10.1007/s11771-019-3982-1.  Google Scholar

[7]

N. ChenJ. J. PengL. WangY. Q. Guo and W. H. Gui, Fuzzy grey cognitive networks modeling and its application, Acta Automatica Sinica, 44 (2018), 1227-1236.   Google Scholar

[8]

N. ChenL. WangJ. J. PengB. Liu and W. H. Gui, Improved nonlinear Hebbian learning algorithm based on fuzzy cognitive networks model, Control Theory and Applications, 33 (2016), 1273-1280.   Google Scholar

[9]

Y. G. DengQ. Y. ChenZ. L. Yin and P. M. Zhang, Iron removal from zine leaching solution by goethite method, Non-ferrous Metal, 62 (2014), 80-84.   Google Scholar

[10]

Z. DjaafarA. Yahia and N. Farid, Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems, Computers and Industrial Engineering, 129 (2019), 377-391.   Google Scholar

[11]

S. Fatahi and H. Moradi, A fuzzy cognitive map model to calculate a user's desirability based on personality in e-learning environments, Computers in Human Behavior, 63 (2016), 272-281.  doi: 10.1016/j.chb.2016.05.041.  Google Scholar

[12]

B. Kosko, Fuzzy cognitive maps, International Journal of Man-Machine Studie, 24 (1986), 65-75.  doi: 10.1016/S0020-7373(86)80040-2.  Google Scholar

[13]

V. Kreinovich and C. D. Stylios, Why fuzzy cognitive maps are efficient, International Journal of Computers Communications & Control, 10 (2015), 825-833.  doi: 10.15837/ijccc.2015.6.2073.  Google Scholar

[14]

T. KottasD. Stimoniaris and D. Tsiamitros, New operation scheme and control of Smart Grids using Fuzzy Cognitive Networks, PowerTech, 2015 IEEE Eindhoven, 63 (2015), 1-5.  doi: 10.1109/PTC.2015.7232563.  Google Scholar

[15]

D. B. Li and J. M. Jiang, Present situation and development trend of zinc smelting technology at home and abroad, China Metal Bulletin, 6 (2015), 41-44.   Google Scholar

[16]

P. C. MarchalJ. G. García and J. G. Ortega, Application of fuzzy cognitive maps and run-to-run control to a decision support system for global set-point determination, IEEE Transactions on Systems Man & Cybernetics Systems, 47 (2017), 2256-2267.  doi: 10.1109/TSMC.2016.2646762.  Google Scholar

[17]

A. Mourhir, E. I. Papageorgiou, K. Kokkinos and T. Rachidi, Exploring precision farming scenarios using Fuzzy Cognitive Maps, Sustainability, 9 7 (2017), 1241. doi: 10.3390/su9071241.  Google Scholar

[18]

X. B. MengY. Liu and X. Z. Gao, A new bio-inspired algorism: Chicken swarm optimization, Proc of International Conference in Swarm of Intelligence, Cham: Springer, (2014), 86-94.   Google Scholar

[19]

M. Obiedat and S. Samarasinghe, A novel semi-quantitative Fuzzy Cognitive Map model for complex systems for addressing challenging participatory real life problems, Applied Soft Computing, 48 (2016), 91-110.  doi: 10.1016/j.asoc.2016.06.001.  Google Scholar

[20]

E. I. PapageorgiouK. D. Aggelopoulou and T. A. Gemtos, Yield prediction in apples using Fuzzy Cognitive Map learning approach, Computers & Electronics in Agriculture, 91 (2013), 19-29.  doi: 10.1016/j.compag.2012.11.008.  Google Scholar

[21]

K. E. ParsopoulosE. I. PapagergiouP. P. Groumpos and M. N. Vrahatis, A first study of fuzzy cognitive maps learning using particle swarm optimization, Proceedings of IEEE Congress on Evolutionary Computation 2003, (2003), 1440-1447.  doi: 10.1109/CEC.2003.1299840.  Google Scholar

[22]

J. Solana-GutiérrezG. RincónC. Alonso and D. García-de-Jalón, Using fuzzy cognitive maps for predicting river managementresponses: A case study of the Esla River basin, Spain, Ecological Modelling, 360 (2017), 260-269.   Google Scholar

[23]

W. StachL. KurganW. Pedrycz and M. Reformat, Genetic learning of fuzzy cognitive maps, Fuzzy Sets and Systems, 153 (2005), 371-401.  doi: 10.1016/j.fss.2005.01.009.  Google Scholar

[24]

D. H. WuS. P. Xu and F. Kong, Convergence analysis and improvement of the chicken swarm optimization algorithm, IEEE Access, 4 (2019), 9400-9412.  doi: 10.1109/ACCESS.2016.2604738.  Google Scholar

[25]

B. Wang, W. Li, X. H. Chen and H. H. Chen, Improved chicken swarm algorithms based on chaos theory and its application in wind power interval prediction, Mathematical Problems in Engineering, (2019), Art. ID 1240717, 10 pp. doi: 10.1155/2019/1240717.  Google Scholar

[26]

Z. Q. WuD. Q. Yu and X. H. Kang, Application of improved chicken swarm optimization for MPPT in photovoltaic system, Optimal Control Applications and Method, 39 (2018), 1029-1042.  doi: 10.1002/oca.2394.  Google Scholar

[27]

X. W. YuL. X. Zhou and X. Y. Li, A novel hybrid localization scheme for deep mine based on wheel graph and chicken swarm optimization, Computer Networks, 154 (2019), 73-78.  doi: 10.1016/j.comnet.2019.02.011.  Google Scholar

[28]

Y. L. Zhang, Modeling and Control of Dynamic System Based on Fuzzy Cognitive Maps, Dalian University of Technology, 2012. Google Scholar

Figure 1.  Process flow chart of goethite process in a smelting enterprise
Figure 2.  AFCN model of 1# reactor for goethite process
Figure 3.  AFCN simulation after CSO learning
Figure 4.  AFCN simulation after ICCSO learning
Figure 5.  FCN simulation after ICCSO learning
Figure 6.  Comparison of ICCSO, GA and PSOA
Table 1.  Standard test functions for testing algorithm performance
Test Function Expression Symbol Range of values Value of optimal solution
Sphere $ f(x)=\sum\limits_{i=1}^n {x_i^2 } $ F1 [-100, 100] 0
Rosenbrock $ \begin{array}{l} f(x)=-a\cdot \exp (-b\cdot \sqrt {\frac{1}{n}\sum\limits_{i=1}^n {x_i^2 } } ) \\ -\exp [\frac{1}{n}\sum\limits_{i=1}^n {\cos (cx_i } )]+a+e \end{array} $ F2 [-30, 30] 0
High Conditioned Elliptic $ f(x)=\sum\limits_{i=1}^n a ^{\frac{i-1}{n-1}x_i^2 } $ F3 [-100, 100] 0
Bent Cigar $ f(x)=x_1^2 +\sum\limits_{i=2}^n {ax_i^2 } $ F4 [-100, 100] 0
Discus $ f(x)=ax_1^2 +\sum\limits_{i=2}^n {x_i^2 } $ F5 [-100, 100] 0
Rotated hyper-ellipsoid $ f(x)=\sum\limits_{i=1}^n {\sum\limits_{j=1}^i {x_j^2 } } $ F6 [-100, 100] 0
Rotated rastrigin $ f(x)=\sum\limits_{i=2}^n {(x_i^2 } -a\cdot \cos 2\pi x_i +a) $ F7 [-100, 100] 0
Test Function Expression Symbol Range of values Value of optimal solution
Sphere $ f(x)=\sum\limits_{i=1}^n {x_i^2 } $ F1 [-100, 100] 0
Rosenbrock $ \begin{array}{l} f(x)=-a\cdot \exp (-b\cdot \sqrt {\frac{1}{n}\sum\limits_{i=1}^n {x_i^2 } } ) \\ -\exp [\frac{1}{n}\sum\limits_{i=1}^n {\cos (cx_i } )]+a+e \end{array} $ F2 [-30, 30] 0
High Conditioned Elliptic $ f(x)=\sum\limits_{i=1}^n a ^{\frac{i-1}{n-1}x_i^2 } $ F3 [-100, 100] 0
Bent Cigar $ f(x)=x_1^2 +\sum\limits_{i=2}^n {ax_i^2 } $ F4 [-100, 100] 0
Discus $ f(x)=ax_1^2 +\sum\limits_{i=2}^n {x_i^2 } $ F5 [-100, 100] 0
Rotated hyper-ellipsoid $ f(x)=\sum\limits_{i=1}^n {\sum\limits_{j=1}^i {x_j^2 } } $ F6 [-100, 100] 0
Rotated rastrigin $ f(x)=\sum\limits_{i=2}^n {(x_i^2 } -a\cdot \cos 2\pi x_i +a) $ F7 [-100, 100] 0
Table 2.  Comparison of test results of algorithms
Title Symbol Algorithms Optimal value Worst value Average value Standard deviation Stable step
F1 CSO 1.8488e-133 2.8082e-123 6.0362e-125 3.9681e-124 30
ICSO 7.0233e-133 6.4356e-125 3.1959e-126 1.1357e-125 26
ICCSO 6.9244e-182 2.0424e-163 5.0084e-165 3.2075e-164 24
F2 CSO 6.1449 7.97 6.9651 0.3031 33
ICSO 5.9715 7.2163 6.7664 0.3324 29
ICCSO 2.1398e-07 4.9115e-05 6.6865e-06 8.2512e-06 27
F3 CSO 6.7415e-127 2.1961e-117 7.328e-119 3.3125e-118 32
ICSO 9.006e-128 1.4093e-118 3.3872e-120 1.9906e-119 28
ICCSO 8.9815e-177 1.2078e-160 2.4737e-162 1.7073e-161 25
F4 CSO 3.1473e-127 1.0419e-117 2.9859e-119 1.4796e-118 36
ICSO 9.4786e-127 5.5614e-119 2.5308e-120 8.8336e-120 28
ICCSO 5.148e-178 5.2831e-161 1.1419e-162 7.372e-162 25
F5 CSO 1.9478e-131 9.9848e-123 5.2391e-124 1.7265-123 35
ICSO 9.8894e-132 2.2241e-123 4.6208e-125 3.1431e-124 27
ICCSO 4.9026e-181 1.0179e-166 5.8305e-168 2.5381e-167 23
F6 CSO 5.4415e-127 1.5173e-109 6.328e-129 3.3225e-117 37
ICSO 8.016e-138 1.9214e-140 4.6672e-110 2.1066e-119 31
ICCSO 9.148e-165 1.3078e-187 2.6728e-154 1.7953e-151 28
F7 CSO 4.1923e-172 1.0419e-117 2.1659e-139 1.4707e-118 36
ICSO 9.4554e-125 4.6634e-122 2.5325e-113 7.7543e-122 32
ICCSO 6.1579e-148 5.2635e-177 1.9719e-172 6.3823e-165 27
Title Symbol Algorithms Optimal value Worst value Average value Standard deviation Stable step
F1 CSO 1.8488e-133 2.8082e-123 6.0362e-125 3.9681e-124 30
ICSO 7.0233e-133 6.4356e-125 3.1959e-126 1.1357e-125 26
ICCSO 6.9244e-182 2.0424e-163 5.0084e-165 3.2075e-164 24
F2 CSO 6.1449 7.97 6.9651 0.3031 33
ICSO 5.9715 7.2163 6.7664 0.3324 29
ICCSO 2.1398e-07 4.9115e-05 6.6865e-06 8.2512e-06 27
F3 CSO 6.7415e-127 2.1961e-117 7.328e-119 3.3125e-118 32
ICSO 9.006e-128 1.4093e-118 3.3872e-120 1.9906e-119 28
ICCSO 8.9815e-177 1.2078e-160 2.4737e-162 1.7073e-161 25
F4 CSO 3.1473e-127 1.0419e-117 2.9859e-119 1.4796e-118 36
ICSO 9.4786e-127 5.5614e-119 2.5308e-120 8.8336e-120 28
ICCSO 5.148e-178 5.2831e-161 1.1419e-162 7.372e-162 25
F5 CSO 1.9478e-131 9.9848e-123 5.2391e-124 1.7265-123 35
ICSO 9.8894e-132 2.2241e-123 4.6208e-125 3.1431e-124 27
ICCSO 4.9026e-181 1.0179e-166 5.8305e-168 2.5381e-167 23
F6 CSO 5.4415e-127 1.5173e-109 6.328e-129 3.3225e-117 37
ICSO 8.016e-138 1.9214e-140 4.6672e-110 2.1066e-119 31
ICCSO 9.148e-165 1.3078e-187 2.6728e-154 1.7953e-151 28
F7 CSO 4.1923e-172 1.0419e-117 2.1659e-139 1.4707e-118 36
ICSO 9.4554e-125 4.6634e-122 2.5325e-113 7.7543e-122 32
ICCSO 6.1579e-148 5.2635e-177 1.9719e-172 6.3823e-165 27
Table 3.  Algorithm analysis
Algorithm ICCSO GA PSO
$ A_3^{destination} $ 0.3600 0.3600 0.3600
$ A_3 $ 0.3559 0.3591 0.3490
Steady step 9 10 13
RMSE 0.0017 0.0022 0.0019
MAE 0.0011 0.0019 0.0015
MAX 0.0026 0.0028 0.0029
SD 0.0009 0.0017 0.0020
Algorithm ICCSO GA PSO
$ A_3^{destination} $ 0.3600 0.3600 0.3600
$ A_3 $ 0.3559 0.3591 0.3490
Steady step 9 10 13
RMSE 0.0017 0.0022 0.0019
MAE 0.0011 0.0019 0.0015
MAX 0.0026 0.0028 0.0029
SD 0.0009 0.0017 0.0020
Table 4.  Errors analysis
Working conditions $ A_3^{destination} $ $ A_3 $ RMSE MAE MAX SD
SSS 0.1400 0.1421 0.0013 0.0011 0.0023 0.0011
SSB 0.1500 0.1490
SBS 0.1518 0.1533
SBB 0.1177 0.1199
MSS 0.2900 0.2906
MSB 0.2694 0.2689
MBS 0.3659 0.3659
MBB 0.0100 0.0120
BSS 0.1620 0.1627
BSB 0.1997 0.2002
BBS 0.3400 0.3407
BBB 0.3200 0.3189
Working conditions $ A_3^{destination} $ $ A_3 $ RMSE MAE MAX SD
SSS 0.1400 0.1421 0.0013 0.0011 0.0023 0.0011
SSB 0.1500 0.1490
SBS 0.1518 0.1533
SBB 0.1177 0.1199
MSS 0.2900 0.2906
MSB 0.2694 0.2689
MBS 0.3659 0.3659
MBB 0.0100 0.0120
BSS 0.1620 0.1627
BSB 0.1997 0.2002
BBS 0.3400 0.3407
BBB 0.3200 0.3189
[1]

Lesia V. Baranovska. Pursuit differential-difference games with pure time-lag. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1021-1031. doi: 10.3934/dcdsb.2019004

[2]

Miao Yu. A solution of TSP based on the ant colony algorithm improved by particle swarm optimization. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 979-987. doi: 10.3934/dcdss.2019066

[3]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[4]

Mohamed A. Tawhid, Kevin B. Dsouza. Hybrid binary dragonfly enhanced particle swarm optimization algorithm for solving feature selection problems. Mathematical Foundations of Computing, 2018, 1 (2) : 181-200. doi: 10.3934/mfc.2018009

[5]

Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097

[6]

Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1371-1384. doi: 10.3934/dcdss.2019094

[7]

Antonio Magaña, Alain Miranville, Ramón Quintanilla. On the time decay in phase–lag thermoelasticity with two temperatures. Electronic Research Archive, 2019, 27: 7-19. doi: 10.3934/era.2019007

[8]

Tao Zhang, Yue-Jie Zhang, Qipeng P. Zheng, P. M. Pardalos. A hybrid particle swarm optimization and tabu search algorithm for order planning problems of steel factories based on the Make-To-Stock and Make-To-Order management architecture. Journal of Industrial & Management Optimization, 2011, 7 (1) : 31-51. doi: 10.3934/jimo.2011.7.31

[9]

Zhuangyi Liu, Ramón Quintanilla. Time decay in dual-phase-lag thermoelasticity: Critical case. Communications on Pure & Applied Analysis, 2018, 17 (1) : 177-190. doi: 10.3934/cpaa.2018011

[10]

Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059

[11]

Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial & Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453

[12]

Ricardo Almeida. Optimality conditions for fractional variational problems with free terminal time. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 1-19. doi: 10.3934/dcdss.2018001

[13]

Shakoor Pooseh, Ricardo Almeida, Delfim F. M. Torres. Fractional order optimal control problems with free terminal time. Journal of Industrial & Management Optimization, 2014, 10 (2) : 363-381. doi: 10.3934/jimo.2014.10.363

[14]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[15]

Junyuan Lin, Timothy A. Lucas. A particle swarm optimization model of emergency airplane evacuations with emotion. Networks & Heterogeneous Media, 2015, 10 (3) : 631-646. doi: 10.3934/nhm.2015.10.631

[16]

Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251

[17]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020017

[18]

Qifeng Cheng, Xue Han, Tingting Zhao, V S Sarma Yadavalli. Improved particle swarm optimization and neighborhood field optimization by introducing the re-sampling step of particle filter. Journal of Industrial & Management Optimization, 2019, 15 (1) : 177-198. doi: 10.3934/jimo.2018038

[19]

Shengzhu Jin, Bong Dae Choi, Doo Seop Eom. Performance analysis of binary exponential backoff MAC protocol for cognitive radio in the IEEE 802.16e/m network. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1483-1494. doi: 10.3934/jimo.2017003

[20]

Jian-Wu Xue, Xiao-Kun Xu, Feng Zhang. Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1401-1414. doi: 10.3934/dcdss.2015.8.1401

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (44)
  • HTML views (202)
  • Cited by (0)

Other articles
by authors

[Back to Top]