[1]
|
A. P. Antigoni and P. P. Groumpos, Modeling of parkinson's disease using fuzzy cognitive maps and non-linear hebbian learning, International Journal on Artificial Intelligence Tools, 23 (2014), 1450010.
|
[2]
|
N. Chen, J. Y. Dai, X. J. Zhou, Q. Q. Yang and W. H. Gui, Distributed model predictive control of iron precipitation process by goethite based on dual iterative method, International Journal of Control Automation and Systems, 17 (2019), 1233-1245.
doi: 10.1007/s12555-017-0742-6.
|
[3]
|
N. Chen, J. Y. Dai, W. H. Gui, Y. Q. Guo and J. Q. Zhou, A hybrid prediction model with a selectively updating strategy for iron removal process in zinc hydrometallurgy, Science China Information Sciences, 63 (2020), 119205.
doi: 10.1007/s11432-018-9711-2.
|
[4]
|
N. Chen, Y. Fan, W. H. Gui, C. H. Yang and Z. H. Jiang, Hybrid modeling and control of iron precipitation by goethite process, Chinese Journal of Nonferrous Metals, 24 (2014), 254-261.
|
[5]
|
B. Christen, C. Kjeldsen, T. Dalgaard and J. Martin-Ortega, Can fuzzy cognitive mapping help in agricultural policy design and communication?, Land Use Policy, 45 (2015), 64-75.
doi: 10.1016/j.landusepol.2015.01.001.
|
[6]
|
N. Chen, J. Q. Zhou, J. J. Peng, W. H. Gui and J. Y. Dai, Modeling of goethite iron precipitation process based on time-delay fuzzy gray cognitive network, Journal of Central South University, 26 (2019), 63-74.
doi: 10.1007/s11771-019-3982-1.
|
[7]
|
N. Chen, J. J. Peng, L. Wang, Y. Q. Guo and W. H. Gui, Fuzzy grey cognitive networks modeling and its application, Acta Automatica Sinica, 44 (2018), 1227-1236.
|
[8]
|
N. Chen, L. Wang, J. J. Peng, B. Liu and W. H. Gui, Improved nonlinear Hebbian learning algorithm based on fuzzy cognitive networks model, Control Theory and Applications, 33 (2016), 1273-1280.
|
[9]
|
Y. G. Deng, Q. Y. Chen, Z. L. Yin and P. M. Zhang, Iron removal from zine leaching solution by goethite method, Non-ferrous Metal, 62 (2014), 80-84.
|
[10]
|
Z. Djaafar, A. Yahia and N. Farid, Multi-objective chicken swarm optimization: A novel algorithm for solving multi-objective optimization problems, Computers and Industrial Engineering, 129 (2019), 377-391.
|
[11]
|
S. Fatahi and H. Moradi, A fuzzy cognitive map model to calculate a user's desirability based on personality in e-learning environments, Computers in Human Behavior, 63 (2016), 272-281.
doi: 10.1016/j.chb.2016.05.041.
|
[12]
|
B. Kosko, Fuzzy cognitive maps, International Journal of Man-Machine Studie, 24 (1986), 65-75.
doi: 10.1016/S0020-7373(86)80040-2.
|
[13]
|
V. Kreinovich and C. D. Stylios, Why fuzzy cognitive maps are efficient, International Journal of Computers Communications & Control, 10 (2015), 825-833.
doi: 10.15837/ijccc.2015.6.2073.
|
[14]
|
T. Kottas, D. Stimoniaris and D. Tsiamitros, New operation scheme and control of Smart Grids using Fuzzy Cognitive Networks, PowerTech, 2015 IEEE Eindhoven, 63 (2015), 1-5.
doi: 10.1109/PTC.2015.7232563.
|
[15]
|
D. B. Li and J. M. Jiang, Present situation and development trend of zinc smelting technology at home and abroad, China Metal Bulletin, 6 (2015), 41-44.
|
[16]
|
P. C. Marchal, J. G. García and J. G. Ortega, Application of fuzzy cognitive maps and run-to-run control to a decision support system for global set-point determination, IEEE Transactions on Systems Man & Cybernetics Systems, 47 (2017), 2256-2267.
doi: 10.1109/TSMC.2016.2646762.
|
[17]
|
A. Mourhir, E. I. Papageorgiou, K. Kokkinos and T. Rachidi, Exploring precision farming scenarios using Fuzzy Cognitive Maps, Sustainability, 9 7 (2017), 1241.
doi: 10.3390/su9071241.
|
[18]
|
X. B. Meng, Y. Liu and X. Z. Gao, A new bio-inspired algorism: Chicken swarm optimization, Proc of International Conference in Swarm of Intelligence, Cham: Springer, (2014), 86-94.
|
[19]
|
M. Obiedat and S. Samarasinghe, A novel semi-quantitative Fuzzy Cognitive Map model for complex systems for addressing challenging participatory real life problems, Applied Soft Computing, 48 (2016), 91-110.
doi: 10.1016/j.asoc.2016.06.001.
|
[20]
|
E. I. Papageorgiou, K. D. Aggelopoulou and T. A. Gemtos, Yield prediction in apples using Fuzzy Cognitive Map learning approach, Computers & Electronics in Agriculture, 91 (2013), 19-29.
doi: 10.1016/j.compag.2012.11.008.
|
[21]
|
K. E. Parsopoulos, E. I. Papagergiou, P. P. Groumpos and M. N. Vrahatis, A first study of fuzzy cognitive maps learning using particle swarm optimization, Proceedings of IEEE Congress on Evolutionary Computation 2003, (2003), 1440-1447.
doi: 10.1109/CEC.2003.1299840.
|
[22]
|
J. Solana-Gutiérrez, G. Rincón, C. Alonso and D. García-de-Jalón, Using fuzzy cognitive maps for predicting river managementresponses: A case study of the Esla River basin, Spain, Ecological Modelling, 360 (2017), 260-269.
|
[23]
|
W. Stach, L. Kurgan, W. Pedrycz and M. Reformat, Genetic learning of fuzzy cognitive maps, Fuzzy Sets and Systems, 153 (2005), 371-401.
doi: 10.1016/j.fss.2005.01.009.
|
[24]
|
D. H. Wu, S. P. Xu and F. Kong, Convergence analysis and improvement of the chicken swarm optimization algorithm, IEEE Access, 4 (2019), 9400-9412.
doi: 10.1109/ACCESS.2016.2604738.
|
[25]
|
B. Wang, W. Li, X. H. Chen and H. H. Chen, Improved chicken swarm algorithms based on chaos theory and its application in wind power interval prediction, Mathematical Problems in Engineering, (2019), Art. ID 1240717, 10 pp.
doi: 10.1155/2019/1240717.
|
[26]
|
Z. Q. Wu, D. Q. Yu and X. H. Kang, Application of improved chicken swarm optimization for MPPT in photovoltaic system, Optimal Control Applications and Method, 39 (2018), 1029-1042.
doi: 10.1002/oca.2394.
|
[27]
|
X. W. Yu, L. X. Zhou and X. Y. Li, A novel hybrid localization scheme for deep mine based on wheel graph and chicken swarm optimization, Computer Networks, 154 (2019), 73-78.
doi: 10.1016/j.comnet.2019.02.011.
|
[28]
|
Y. L. Zhang, Modeling and Control of Dynamic System Based on Fuzzy Cognitive Maps, Dalian University of Technology, 2012.
|